Property of Group Automorphism which Fixes Identity Only/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Property of Group Automorphism which Fixes Identity Only

Let $G$ be a finite group whose identity is $e$.

Let $\phi: G \to G$ be a group automorphism.

Let $\phi$ have the property that:

$\forall g \in G \setminus \set e: \map \phi t \ne t$

That is, the only fixed element of $\phi$ is $e$.


Let:

$\phi^2 = I_G$

where $I_G$ denotes the identity mapping on $G$.

Then:

$\forall g \in G: \map \phi g = g^{-1}$


Proof

Let $g \in G$.

Then:

\(\ds \exists x \in G: \, \) \(\ds \map \phi g\) \(=\) \(\ds \map \phi {x^{-1} \, \map \phi x}\) Corollary 1
\(\ds \) \(=\) \(\ds \paren {\map \phi x}^{-1} x\)
\(\ds \) \(=\) \(\ds g^{-1}\)

$\blacksquare$


Sources