Pseudometric Space generates Uniformity
Theorem
Let $P = \struct {A, d}$ be a pseudometric space.
Let $\UU$ be the set of sets defined as:
- $\UU := \set {u \in A \times A: \exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u}$
where:
- $\R_{>0}$ is the set of strictly positive real numbers
- $u_\epsilon$ is defined as:
- $u_\epsilon := \set {\tuple {x, y}: \map d {x, y} < \epsilon}$
Then $\UU$ is a uniformity on $A$ which generates a uniform space with the same topology as the topology induced by $d$.
Proof
We check whether the Uniformity Axioms are satisfied.
$\text U 1$
Let $x \in A$.
Then $\tuple {x, x} \in \Delta_A$.
Let $u \in \UU$.
From definition:
- $\exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u$
By Metric Space Axiom $(\text M 1)$:
- $\map d {x, x} = 0 < \epsilon$
Hence we have $\tuple {x, x} \in u_\epsilon$.
By definition of subset, $\Delta_A \subseteq u_\epsilon \subseteq u$.
$\Box$
$\text U 2$
Let $u, v \in \UU$.
From definition:
- $\exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u$
- $\exists \delta \in \R_{>0}: u_\delta \subseteq v$
Without loss of generality assume that $\delta \ge \epsilon$.
Let $\tuple {x, y} \in u_\epsilon$.
Then $\map d {x, y} < \epsilon \le \delta$.
Thus $\tuple {x, y} \in u_\delta$.
By definition of subset, $u_\epsilon \subseteq u_\delta$.
Hence:
\(\ds u_\epsilon\) | \(=\) | \(\ds u_\epsilon \cap u_\delta\) | Intersection with Subset is Subset | |||||||||||
\(\ds \) | \(\subseteq\) | \(\ds u \cap v\) | Set Intersection Preserves Subsets | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds u \cap v\) | \(\in\) | \(\ds \UU\) |
$\Box$
$\text U 3$
Let $v \in A \times A$.
Suppose $u \in \UU$ and $u \subseteq v$.
From definition:
- $\exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u$
Thus $u_\epsilon \subseteq v$.
Therefore $v \in \UU$ as well.
$\Box$
$\text U 4$
Let $u \in \UU$.
From definition:
- $\exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u$
Let $v = u_{\epsilon / 2}$.
Since $u_{\epsilon / 2} \subseteq v$ and $\dfrac \epsilon 2 > 0$, $v \in \UU$.
From definition:
\(\ds v \circ v\) | \(=\) | \(\ds \set {\tuple {x, z}: \exists y \in A: \tuple {x, y} \in v, \tuple {y, z} \in v}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \set {\tuple {x, z}: \exists y \in A: \map d {x, y} < \frac \epsilon 2, \map d {y, z} < \frac \epsilon 2}\) |
Let $\tuple {x, z} \in v \circ v$.
Then:
- $\exists y \in A: \map d {x, y} < \dfrac \epsilon 2, \map d {y, z} < \dfrac \epsilon 2$
By Metric Space Axiom $(\text M 2)$: Triangle Inequality:
\(\ds \map d {x, z}\) | \(\le\) | \(\ds \set {\tuple {x, z}: \exists y \in A: \tuple {x, y} \in v, \tuple {y, z} \in v}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \frac \epsilon 2 + \frac \epsilon 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \epsilon\) |
Hence $\tuple {x, z} \in u_\epsilon \subseteq u$.
By definition of subset, $v \circ v \subseteq u$.
$\Box$
$\text U 5$
Let $u \in \UU$.
From definition:
- $\exists \epsilon \in \R_{>0}: u_\epsilon \subseteq u$
Suppose $\tuple {b, a} \in u_\epsilon$.
Then $\map d {b, a} < \epsilon$.
By Metric Space Axiom $(\text M 3)$:
- $\map d {a, b} = \map d {b, a} < \epsilon$
Hence $\tuple {a, b} \in u_\epsilon \subseteq u$.
Consider the set $u^{-1} = \set {\tuple {y, x}: \tuple {x, y} \in u}$.
From the above, $\tuple {b, a} \in u^{-1}$.
By definition of subset, $u_\epsilon \subseteq u^{-1}$.
Hence $u^{-1} \in \UU$.
$\Box$
![]() | This needs considerable tedious hard slog to complete it. In particular: It remains to show that the topology induced by the uniformity $\UU$ is the same as the one induced by the pseudometric $d$ To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text I$: Basic Definitions: Section $5$: Metric Spaces: Metric Uniformities