Putzer Algorithm
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Algorithm
The Putzer Algorithm is a method for analytically evaluating Matrix Exponentials using only eigenvalues and components in the solution of a relatively simple linear system.
It is particularly useful for matrices that cannot be diagonalized because it avoids the use of Jordan-Canonical Form.
Method
Let $\lambda_1, \lambda_2, \dotsc, \lambda_n$ be the (not necessarily distinct) eigenvalues of the matrix $A$.
Then:
- $\ds e^{\mathbf A t} = \sum_{k \mathop = 0}^{n - 1} \map {p_{k + 1} } t M_k$
This formula is constructed by setting $M_0 = \mathbf I$:
- $\ds M_k = \prod_{i \mathop = 1}^k \paren {\mathbf A - \lambda_i I}$
where:
- $\mathbf I$ is the identity matrix
and:
- the functions $\map {p_1} t, \map {p_2} t, \dotsc, \map {p_n} t$ are taken to be components of the vector function solution to the IVP:
- $p' = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 1 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 1 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & \lambda_n \end{pmatrix} p$
such that:
- $\map p 0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots\\ 0 \end{pmatrix}$
Proof of Validity
Let $\map \Phi t$ represent the finite matrix sum, derived above, as the candidate for $e^{\mathbf A t}$.
By the uniqueness theorem, it suffices to show that $\Phi$ satisfies the IVP:
- $X' = \mathbf A X: \map X 0 = \mathbf I$
By definition:
- $\map {p_1'} t = \lambda_1 \map {p_1} t$
- $\map {p_i'} t = \map {p_{i - 1} } t + \lambda_i \, \map {p_i} t: i > 1$
and:
- $M_0 = \mathbf I$
- $M_k = \paren {\mathbf A - \lambda_k \mathbf I} M_{k - 1}$
Note also that $M_n = 0$ by the Cayley-Hamilton Theorem.
Then:
\(\ds \map {\Phi'} t - \mathbf A \map \Phi t\) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} \map {p_{k + 1}'} t M_k - \mathbf A \sum_{k \mathop = 0}^{n - 1} \map {p_{k + 1} } t M_k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda_1 \map {p_1} t M_0 + \sum_{k \mathop = 1}^{n - 1} \paren {\lambda_{k + 1} \map {p_{k + 1} } t + \map {p_k} t} M_k - \sum_{k \mathop = 0}^{n - 1} \map {p_{k + 1} } t \paren {M_{k + 1} + \lambda_{k + 1} M_k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^{n - 1} \map {p_k} t M_k - \sum_{k \mathop = 0}^{n - 1} \map {p_{k + 1} } t M_{k + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\map {p_n} t M_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Source of Name
This entry was named for Eugene James Putzer.
Sources
- 1966: E.J. Putzer: Avoiding the Jordan canonical form in the discussion of linear systems with constants coefficients (Amer. Math. Monthly Vol. 73: pp. 2 – 7) www.jstor.org/stable/2313914