Quadruple Angle Formulas/Cosine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 4 \theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$


Proof

\(\ds \cos 4 \theta\) \(=\) \(\ds \cos \paren {2 \theta + 2 \theta}\)
\(\ds \) \(=\) \(\ds \cos 2 \theta \cos 2 \theta - \sin 2 \theta \sin 2 \theta\) Cosine of Sum
\(\ds \) \(=\) \(\ds \paren {\cos^2 \theta - \sin^2 \theta} \paren {\cos^2 \theta - \sin^2 \theta} - \paren {2 \sin \theta \cos \theta} \paren {2 \sin \theta \cos \theta}\) Double Angle Formulas
\(\ds \) \(=\) \(\ds \cos^4 \theta - 2 \cos^2 \theta \sin^2 \theta + \sin^4 \theta - 4 \cos^2 \theta \sin^2 \theta\) multiplying out
\(\ds \) \(=\) \(\ds \cos^4 \theta - 2 \cos^2 \theta \paren {1 - \cos^2 \theta} + \paren {1 - \cos^2 \theta}^2 - 4 \cos^2 \theta \paren {1 - \cos^2 \theta}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 8 \cos^4 \theta - 8 \cos^2 \theta + 1\) multiplying out and gathering terms

$\blacksquare$