Quantum-Charge Ratio

From ProofWiki
Jump to navigation Jump to search

Theorem

The ratio of Planck's constant to the elementary charge is given by:

\(\ds \dfrac h \E\) \(\approx\) \(\ds 4 \cdotp 13566 \, 7697 \times 10^{-15}\) joule seconds per coulombs \(\quad\) This sequence is A343571 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
\(\ds \) \(\approx\) \(\ds 4 \cdotp 13566 \, 7697 \times 10^{-7}\) erg seconds per abcoulomb
\(\ds \) \(\approx\) \(\ds 1 \cdotp 37951 \, 0386 \times 10^{-17}\) erg seconds per statcoulomb


Proof

We have:

\(\ds h\) \(=\) \(\ds 6 \cdotp 62607 \, 015 \times 10^{-34} \, \mathrm {J \, s}\) that is: joule seconds \(\quad\) Definition of Planck's Constant
\(\ds \E\) \(=\) \(\ds 1 \cdotp 60217 \, 6634 \times 10^{−19} \, \mathrm C\) that is: coulombs \(\quad\) Definition of Elementary Charge
\(\ds \leadsto \ \ \) \(\ds \dfrac h \E\) \(\approx\) \(\ds 4 \cdotp 13566 \, 7697 \times 10^{-15} \, \mathrm {J \, s / C}\) \(\quad\) by calculation


\(\ds h\) \(=\) \(\ds 6 \cdotp 62607 \, 015 \times 10^{-27} \, \mathrm {erg \, s}\) that is: erg seconds \(\quad\) Definition of Planck's Constant
\(\ds \E\) \(=\) \(\ds 1 \cdotp 60217 \, 6634 \times 10^{−20} \, \mathrm {abC}\) that is: abcoulombs \(\quad\) Definition of Elementary Charge
\(\ds \leadsto \ \ \) \(\ds \dfrac h \E\) \(\approx\) \(\ds 4 \cdotp 13566 \, 7697 \times 10^{-7} \, \mathrm {erg \, s / abC}\) by calculation


\(\ds h\) \(=\) \(\ds 6 \cdotp 62607 \, 015 \times 10^{-27} \, \mathrm {erg \, s}\) that is: erg seconds \(\quad\) Definition of Planck's Constant
\(\ds \E\) \(=\) \(\ds 4 \cdotp 80320 \, 42510 \times 10^{-10} \, \mathrm {statC}\) that is: statcoulombs \(\quad\) Definition of Elementary Charge
\(\ds \leadsto \ \ \) \(\ds \dfrac h \E\) \(\approx\) \(\ds 1 \cdotp 37951 \, 0386 \times 10^{-17} \, \mathrm {erg \, s / statC}\) by calculation

$\blacksquare$


Sources

which gives the mantissas of these figures as:
$4 \cdotp 135 \, 708$ with an uncertainty of $\pm 14$ corresponding to the $2$ least significant figures
$1 \cdotp 379 \, 523 \, 4$ with an uncertainty of $\pm 46$ corresponding to the $2$ least significant figures