Quotient Rule for Derivatives/Examples/(x-1)(2x-1) over x-2

From ProofWiki
Jump to navigation Jump to search

Example of Use of Quotient Rule for Derivatives

$\map {\dfrac \d {\d x} } {\dfrac {\paren {x - 1} \paren {2 x - 1} } {x - 2} } = \dfrac {2 x^2 - 8 x + 5} {\paren {x - 2}^2}$


Proof

\(\ds \map {\dfrac \d {\d x} } {\dfrac {\paren {x - 1} \paren {2 x - 1} } {x - 2} }\) \(=\) \(\ds \dfrac {\paren {x - 2} \map {\frac \d {\d x} } {\paren {x - 1} \paren {2 x - 1} } - \paren {x - 1} \paren {2 x - 1} \map {\frac \d {\d x} } {x - 2} } {\paren {x - 2}^2}\) Quotient Rule for Derivatives
\(\ds \) \(=\) \(\ds \dfrac {\paren {x - 2} \paren {\paren {2 x - 1} \map {\frac \d {\d x} } {x - 1} + \paren {x - 1} \map {\frac \d {\d x} } {2 x - 1} } - \paren {x - 1} \paren {2 x - 1} \cdot 1} {\paren {x - 2}^2}\) Product Rule for Derivatives, Derivative of Identity Function
\(\ds \) \(=\) \(\ds \dfrac {\paren {x - 2} \paren {\paren {2 x - 1} \cdot 1 + \paren {x - 1} \cdot 2} - \paren {x - 1} \paren {2 x - 1} } {\paren {x - 2}^2}\) Derivative of Identity Function
\(\ds \) \(=\) \(\ds \dfrac {\paren {x - 2} \paren {2 x - 1} + 2 \paren {x - 1} \paren {x - 2} - \paren {x - 1} \paren {2 x - 1} } {\paren {x - 2}^2}\) simplification
\(\ds \) \(=\) \(\ds \dfrac {2 x^2 - 4 x - x + 2 + 2 x^2 - 2 x - 4 x + 4 - 2 x^2 + 2 x + x - 1} {\paren {x - 2}^2}\) multiplying out
\(\ds \) \(=\) \(\ds \dfrac {2 x^2 - 8 x + 5} {\paren {x - 2}^2}\) simplification

$\blacksquare$


Sources