Quotient Structure of Semigroup is Semigroup
Jump to navigation
Jump to search
Theorem
Let $\RR$ be a congruence relation on a semigroup $\struct {S, \circ}$.
Then the quotient structure $\struct {S / \RR, \circ_\RR}$ is a semigroup.
Proof
From Quotient Structure is Well-Defined we have that $\circ_\RR$ is closed on $S / \RR$.
Let $\eqclass x \RR, \eqclass y \RR, \eqclass z \RR \in S / \RR$.
We shall prove that $\circ_\RR$ is associative:
\(\ds \paren {\eqclass x \RR \circ_{S / \RR} \eqclass y \RR} \circ_{S / \RR} \eqclass z \RR\) | \(=\) | \(\ds \eqclass {x \circ y} \RR \circ_{S / \RR} \eqclass z \RR\) | Definition of Operation Induced on $S / \RR$ by $\circ$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {\paren {x \circ y} \circ z} \RR\) | Definition of Operation Induced on $S / \RR$ by $\circ$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass {x \circ \paren {y \circ z} } \RR\) | $\circ$ is Associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass x \RR \circ_{S / \RR} \eqclass {y \circ z} \RR\) | Definition of Operation Induced on $S / \RR$ by $\circ$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \eqclass x \RR \circ_{S / \RR} \paren {\eqclass y \RR \circ_{S / \RR} \eqclass z \RR}\) | Definition of Operation Induced on $S / \RR$ by $\circ$ |
Hence $\struct {S / \RR, \circ_\RR}$ is a semigroup.
$\blacksquare$