Exponent Combination Laws/Quotient of Powers
< Exponent Combination Laws(Redirected from Quotient of Powers)
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{>0}$ be a positive real number.
Let $x, y \in \R$ be real numbers.
Let $a^x$ be defined as $a$ to the power of $x$.
Then:
- $\dfrac{a^x} {a^y} = a^{x - y}$
Proof
\(\ds \frac {a^x} {a^y}\) | \(=\) | \(\ds a^x \paren {\frac 1 {a^y} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^x} \paren {a^{-y} }\) | Exponent Combination Laws: Negative Power | |||||||||||
\(\ds \) | \(=\) | \(\ds a^{x - y}\) | Product of Powers |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Laws of Exponents: $7.2$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): exponent (index)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): exponent (index)
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 13$: Laws of Exponents: $13.2.$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): index (indices) (ii)