Exponent Combination Laws/Negative Power
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{>0}$ be a strictly positive real number.
Let $x \in \R$ be a real number.
Let $a^x$ be defined as $a$ to the power of $x$.
Then:
- $a^{-x} = \dfrac 1 {a^x}$
Proof
\(\ds a^{-x}\) | \(=\) | \(\ds \map \exp {-x \ln a}\) | Definition of Power to Real Number | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map \exp {x \ln a} }^{-1}\) | Exponential of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\map \exp {x \ln a} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^x}\) | Definition of Power to Real Number |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Laws of Exponents: $7.5$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 14.7 \ (1) \ \text{(iii)}$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.2$: Numbers, Powers, and Logarithms
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): exponent (index)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): exponent (index)