Reciprocal of One Plus Cosine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac 1 {1 + \cos x} = \dfrac 1 2 \sec^2 \dfrac x 2$


Proof

\(\ds 1 + \cos x\) \(=\) \(\ds \cos 0 + \cos x\) Cosine of Zero is One
\(\ds \) \(=\) \(\ds 2 \map \cos {\dfrac {0 + x} 2} \map \cos {\dfrac {0 - x} 2}\) Cosine plus Cosine
\(\ds \) \(=\) \(\ds 2 \map \cos {\dfrac x 2} \map \cos {\dfrac {-x} 2}\) simplifying
\(\ds \) \(=\) \(\ds 2 \map \cos {\dfrac x 2} \map \cos {\dfrac x 2}\) Cosine Function is Even
\(\ds \) \(=\) \(\ds 2 \map {\cos^2} {\frac x 2}\) simplifying
\(\ds \leadsto \ \ \) \(\ds \frac 1 {1 + \cos x}\) \(=\) \(\ds \frac 1 2 \map {\sec^2} {\frac x 2}\) Definition of Secant Function

$\blacksquare$