Equivalence of Definitions of Transitive Relation
(Redirected from Relation contains Composite with Self iff Transitive)
Jump to navigation
Jump to search
Theorem
The following definitions of the concept of Transitive Relation are equivalent:
Definition 1
$\RR$ is a transitive relation if and only if:
- $\tuple {x, y} \in \RR \land \tuple {y, z} \in \RR \implies \tuple {x, z} \in \RR$
that is:
- $\set {\tuple {x, y}, \tuple {y, z} } \subseteq \RR \implies \tuple {x, z} \in \RR$
Definition 2
$\RR$ is a transitive relation if and only if:
- $\RR \circ \RR \subseteq \RR$
where $\circ$ denotes composite relation.
Proof
Definition 1 implies Definition 2
Let $\RR$ be a relation which fulfills the condition:
- $\tuple {x, y} \in \RR \land \tuple {y, z} \in \RR \implies \tuple {x, z} \in \RR$
Then:
\(\ds \tuple {x, z}\) | \(\in\) | \(\ds \RR \circ \RR\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists y \in \RR: \, \) | \(\ds \tuple {x, y}\) | \(\in\) | \(\ds \RR\) | Definition of Composition of Relations | |||||||||
\(\, \ds \land \, \) | \(\ds \tuple {y, z}\) | \(\in\) | \(\ds \RR\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \tuple {x, z}\) | \(\in\) | \(\ds \RR\) | Definition 1 of Transitive Relation | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \RR \circ \RR\) | \(\subseteq\) | \(\ds \RR\) | Definition of Subset |
Thus $\RR$ is transitive by definition 2.
$\Box$
Definition 2 implies Definition 1
Let $\RR$ be a relation that fulfills the condition:
- $\RR \circ \RR \subseteq \RR$
Aiming for a contradiction, suppose $\RR$ does not fulfill the condition:
- $\tuple {x, y} \in \RR \land \tuple {y, z} \in \RR \implies \tuple {x, z} \in \RR$
Then:
\(\ds \exists \paren {\tuple {x, y} \in \RR \land \tuple {y, z} \in \RR}: \, \) | \(\ds \tuple {x, z}\) | \(\notin\) | \(\ds \RR\) | Definition of Non-Transitive Relation | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists \tuple {x, z} \in \RR \circ \RR: \, \) | \(\ds \tuple {x, z}\) | \(\notin\) | \(\ds \RR\) | Definition of Composition of Relations | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \RR \circ \RR\) | \(\nsubseteq\) | \(\ds \RR\) | Definition of Subset |
This contradicts our statement that $\RR \circ \RR \subseteq \RR$.
Hence by Proof by Contradiction $\RR$ does fulfills the condition:
- $\tuple {x, y} \in \RR \land \tuple {y, z} \in \RR \implies \tuple {x, z} \in \RR$
Thus $\RR$ is transitive by definition 1.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {II}$: New Structures from Old: $\S 10$: Equivalence Relations: Exercise $10.6 \ \text{(c)}$
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{I}$: Sets and Functions: Relations: Theorem $3$