# Ring of Idempotents is Idempotent Ring

## Theorem

Let $\struct {R, +, \circ}$ be a commutative ring.

Let $\struct {A, \oplus, \circ}$ be its ring of idempotents.

Then $\struct {A, \oplus, \circ}$ is an idempotent ring.

## Proof

First, it is to be established that $\struct {A, \oplus, \circ}$ is a ring in the first place.

This we do by verifying the ring axioms.

### Axiom $(A0)$: Closure for $\oplus$

Let $x, y \in A$.

It is to be shown that $x \oplus y \in A$, i.e. that $x \oplus y$ is an idempotent element of $R$.

Compute as follows:

 $\displaystyle \paren {x \oplus y} \circ \paren {x \oplus y}$ $=$ $\displaystyle \paren {x + y - 2 x \circ y} \circ \paren {x + y - 2 x \circ y}$ Definition of $\oplus$ $\displaystyle$ $=$ $\displaystyle \paren {x + y - 2 x \circ y} \circ x + \paren {x + y - 2 x \circ y} \circ y - \paren {x + y - 2 x \circ y} \circ \paren {2 x \circ y}$ $\circ$ distributes over $+$ $\displaystyle$ $=$ $\displaystyle x \circ x + y \circ x - \paren {2 x \circ y} \circ x + x \circ y + y \circ y - \paren {2 x \circ y} \circ y$ $\displaystyle$  $\, \displaystyle - \,$ $\displaystyle x \circ \paren {2 x \circ y} - y \circ \paren {2 x \circ y} + \paren {2 x \circ y} \circ \paren {2 x \circ y}$ $\circ$ distributes over $+$ $\displaystyle$ $=$ $\displaystyle x \circ x + y \circ x - 2 x \circ y \circ x + x \circ y + y \circ y - 2 x \circ y \circ y$ $\displaystyle$  $\, \displaystyle - \,$ $\displaystyle 2 x \circ x \circ y - 2 y \circ x \circ y + 4 x \circ y \circ x \circ y$ Product of Integral Multiples $\displaystyle$ $=$ $\displaystyle x + x \circ y - 2 x \circ y + x \circ y + y - 2 x \circ y - 2 x \circ y - 2 x \circ y + 4 x \circ y$ $\circ$ is commutative, $x, y$ are idempotent $\displaystyle$ $=$ $\displaystyle x + y - 2 x \circ y$ Integral Multiple Distributes over Ring Addition $\displaystyle$ $=$ $\displaystyle x \oplus y$ Definition of $\oplus$

Hence $x \oplus y \in A$, as desired.

$\Box$

### Axiom $(A1)$: Associativity of $\oplus$

Let $x, y, z \in A$.

It is to be shown that $\oplus$ is associative, i.e.:

$\paren {x \oplus y} \oplus z = x \oplus \paren {y \oplus z}$

This is shown by the following computation:

 $\displaystyle \paren {x \oplus y} \oplus z$ $=$ $\displaystyle \paren {x \oplus y} + z - 2 \paren {x \oplus y} \circ z$ $\displaystyle$ $=$ $\displaystyle x + y - 2 x \circ y + z - 2 \paren {x + y - 2 x \circ y} \circ z$ $\displaystyle$ $=$ $\displaystyle x + y + z - 2 x \circ y - 2 x \circ z - 2 y \circ z + 4 x \circ y \circ z$ $\displaystyle$ $=$ $\displaystyle x + \paren {y + z - 2 y \circ z} - 2 x \circ \paren {y + z - 2 y \circ z}$ $\displaystyle$ $=$ $\displaystyle x + \paren {y \oplus z} - 2 x \circ \paren {y \oplus z}$ $\displaystyle$ $=$ $\displaystyle x \oplus \paren {y \oplus z}$

$\Box$

### Axiom $(A2)$: Commutativity of $\oplus$

Let $x, y \in A$.

It is to be shown that $\oplus$ is associative, i.e.:

$x \oplus y = y \oplus x$

This is shown by the following computation:

 $\displaystyle x \oplus y$ $=$ $\displaystyle x + y - 2 x \circ y$ $\displaystyle$ $=$ $\displaystyle y + x - 2 y \circ x$ $+, \circ$ are commutative $\displaystyle$ $=$ $\displaystyle y \oplus x$

$\Box$

### Axiom $(A3)$: Identity for $\oplus$

Let $x \in A$, and let $0_R$ be the zero of $R$.

By Ring Zero is Idempotent, $0_R \in A$.

It suffices to show that:

$x \oplus 0_R = x$

since $(A2)$ was already verified above.

Now:

 $\displaystyle x \oplus 0_R$ $=$ $\displaystyle x + 0_R - 2 x \circ 0_R$ $\displaystyle$ $=$ $\displaystyle x$ Ring Product with Zero

as desired.

$\Box$

### Axiom $(A4)$: Inverses for $\oplus$

Let $x \in A$.

It is to be shown that there exists $y \in A$ such that:

$x \oplus y = y \oplus x = 0_R$

by $(A3)$ above.

In fact, one has:

 $\displaystyle x \oplus x$ $=$ $\displaystyle x + x - 2 x \circ x$ $\displaystyle$ $=$ $\displaystyle 2 x - 2 x$ $x$ is an idempotent element $\displaystyle$ $=$ $\displaystyle 0_R$

so that each $x \in A$ is its own inverse for $\oplus$.

$\Box$

### Axiom $(M0)$: Closure for $\circ$

Let $x, y \in A$.

It is to be shown that:

$x \circ y \in A$

i.e. that $x \circ y$ is idempotent.

We have the following computation:

 $\displaystyle \paren {x \circ y} \circ \paren {x \circ y}$ $=$ $\displaystyle x \circ x \circ y \circ y$ $\circ$ is associative and commutative $\displaystyle$ $=$ $\displaystyle x \circ y$ $x, y$ are idempotent elements

$\Box$

### Axiom $(M1)$: Associativity of $\circ$

Immediate from Restriction of Associative Operation is Associative.

$\Box$

### Axiom $(D)$: Distributivity

By Restriction of Commutative Operation is Commutative, $\circ$ is commutative on $A$.

Thus to establish distributivity, it suffices to verify, for $x, y, z \in A$:

$x \circ \paren {y \oplus z} = \paren {x \circ y} \oplus \paren {x \circ z}$

To this end, we compute as follows:

 $\displaystyle x \circ \paren {y \oplus z}$ $=$ $\displaystyle x \circ \paren {y + z - 2 y \circ z}$ $\displaystyle$ $=$ $\displaystyle x \circ y + x \circ z - 2 x \circ y \circ z$ $\displaystyle$ $=$ $\displaystyle x \circ y + x \circ z - 2 x \circ x \circ y \circ z$ $x$ is an idempotent element $\displaystyle$ $=$ $\displaystyle x \circ y + x \circ z - 2 x \circ y \circ x \circ z$ $\circ$ is commutative $\displaystyle$ $=$ $\displaystyle \paren {x \circ y} \oplus \paren {x \circ z}$

$\Box$

Therefore, having verified all ring axioms, we conclude $\struct {A, \oplus, \circ}$ is a ring.

By assumption all $x \in A$ are idempotent elements for $\circ$.

Thus $\circ$ is an idempotent operation on $A$.

Consequently, $\struct {A, \oplus, \circ}$ is an idempotent ring.

$\blacksquare$