Ring of Idempotents is Idempotent Ring
Theorem
Let $\struct {R, +, \circ}$ be a commutative ring.
Let $\struct {A, \oplus, \circ}$ be its ring of idempotents.
Then $\struct {A, \oplus, \circ}$ is an idempotent ring.
Proof
First, it is to be established that $\struct {A, \oplus, \circ}$ is a ring in the first place.
This we do by verifying the ring axioms.
Ring Axiom $\text A0$: Closure under Addition
Let $x, y \in A$.
It is to be shown that $x \oplus y \in A$, i.e. that $x \oplus y$ is an idempotent element of $R$.
Compute as follows:
\(\ds \paren {x \oplus y} \circ \paren {x \oplus y}\) | \(=\) | \(\ds \paren {x + y - 2 x \circ y} \circ \paren {x + y - 2 x \circ y}\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x + y - 2 x \circ y} \circ x + \paren {x + y - 2 x \circ y} \circ y - \paren {x + y - 2 x \circ y} \circ \paren {2 x \circ y}\) | Ring Axiom $\text D$: Distributivity of Product over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ x + y \circ x - \paren {2 x \circ y} \circ x + x \circ y + y \circ y - \paren {2 x \circ y} \circ y\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds x \circ \paren {2 x \circ y} - y \circ \paren {2 x \circ y} + \paren {2 x \circ y} \circ \paren {2 x \circ y}\) | Ring Axiom $\text D$: Distributivity of Product over Addition | ||||||||||
\(\ds \) | \(=\) | \(\ds x \circ x + y \circ x - 2 x \circ y \circ x + x \circ y + y \circ y - 2 x \circ y \circ y\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds 2 x \circ x \circ y - 2 y \circ x \circ y + 4 x \circ y \circ x \circ y\) | Product of Integral Multiples | ||||||||||
\(\ds \) | \(=\) | \(\ds x + x \circ y - 2 x \circ y + x \circ y + y - 2 x \circ y - 2 x \circ y - 2 x \circ y + 4 x \circ y\) | $\circ$ is commutative, $x, y$ are idempotent | |||||||||||
\(\ds \) | \(=\) | \(\ds x + y - 2 x \circ y\) | Integral Multiple Distributes over Ring Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x \oplus y\) | Definition of $\oplus$ |
Hence $x \oplus y \in A$, as desired.
$\Box$
Ring Axiom $\text A1$: Associativity of Addition
Let $x, y, z \in A$.
It is to be shown that $\oplus$ is associative, that is:
- $\paren {x \oplus y} \oplus z = x \oplus \paren {y \oplus z}$
This is shown by the following computation:
\(\ds \paren {x \oplus y} \oplus z\) | \(=\) | \(\ds \paren {x \oplus y} + z - 2 \paren {x \oplus y} \circ z\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x + y - 2 x \circ y + z - 2 \paren {x + y - 2 x \circ y} \circ z\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x + y - 2 x \circ y + z - 2 x \circ z - 2 y \circ z + 4 x \circ y \circ z\) | Ring Axiom $\text D$: Distributivity of Product over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x + y + z - 2 y \circ z - 2 x \circ y - 2 x \circ z + 4 x \circ y \circ z\) | Ring Axiom $\text A2$: Commutativity of Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x + \paren { y + z - 2 y \circ z} - 2 x \circ y - 2 x \circ z + 4 x \circ y \circ z\) | Ring Axiom $\text A1$: Associativity of Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x + \paren {y + z - 2 y \circ z} - 2 x \circ \paren {y + z - 2 y \circ z}\) | Ring Axiom $\text D$: Distributivity of Product over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x + \paren {y \oplus z} - 2 x \circ \paren {y \oplus z}\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \oplus \paren {y \oplus z}\) | Definition of $\oplus$ |
$\Box$
Ring Axiom $\text A2$: Commutativity of Addition
Let $x, y \in A$.
It is to be shown that $\oplus$ is commutative, that is:
- $x \oplus y = y \oplus x$
This is shown by the following computation:
\(\ds x \oplus y\) | \(=\) | \(\ds x + y - 2 x \circ y\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds y + x - 2 y \circ x\) | Ring Axiom $\text A2$: Commutativity of Addition and \circ is commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds y \oplus x\) | Definition of $\oplus$ |
$\Box$
Ring Axiom $\text A3$: Identity for Addition
Let $x \in A$, and let $0_R$ be the zero of $R$.
By Ring Zero is Idempotent, $0_R \in A$.
It suffices to show that:
- $x \oplus 0_R = x$
since Ring Axiom $\text A2$: Commutativity of Addition was already verified above.
Now:
\(\ds x \oplus 0_R\) | \(=\) | \(\ds x + 0_R - 2 x \circ 0_R\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x\) | Ring Product with Zero |
as desired.
$\Box$
Ring Axiom $\text A4$: Inverses for Addition
Let $x \in A$.
It is to be shown that there exists $y \in A$ such that:
- $x \oplus y = y \oplus x = 0_R$
by $(A3)$ above.
In fact, one has:
\(\ds x \oplus x\) | \(=\) | \(\ds x + x - 2 x \circ x\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 x - 2 x\) | $x$ is an idempotent element | |||||||||||
\(\ds \) | \(=\) | \(\ds 0_R\) | Ring Subtraction equals Zero iff Elements are Equal |
so that each $x \in A$ is its own inverse for $\oplus$.
$\Box$
Ring Axiom $\text M0$: Closure under Product
Let $x, y \in A$.
It is to be shown that:
- $x \circ y \in A$
that is, that $x \circ y$ is idempotent.
We have the following computation:
\(\ds \paren {x \circ y} \circ \paren {x \circ y}\) | \(=\) | \(\ds x \circ \paren {y \circ x} \circ y\) | Ring Axiom $\text M1$: Associativity of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ \paren {x \circ y} \circ y\) | $\circ$ is commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x \circ x} \circ \paren {y \circ y}\) | Ring Axiom $\text M1$: Associativity of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ y\) | $x, y$ are idempotent elements |
$\Box$
Ring Axiom $\text M1$: Associativity of Product
Immediate from Restriction of Associative Operation is Associative.
$\Box$
Ring Axiom $\text D$: Distributivity of Product over Addition
By Restriction of Commutative Operation is Commutative, $\circ$ is commutative on $A$.
Thus to establish distributivity, it suffices to verify, for $x, y, z \in A$:
- $x \circ \paren {y \oplus z} = \paren {x \circ y} \oplus \paren {x \circ z}$
To this end, we compute as follows:
\(\ds x \circ \paren {y \oplus z}\) | \(=\) | \(\ds x \circ \paren {y + z - 2 y \circ z}\) | Definition of $\oplus$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ y + x \circ z - 2 x \circ y \circ z\) | Ring Axiom $\text D$: Distributivity of Product over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ y + x \circ z - 2 x \circ x \circ y \circ z\) | $x$ is an idempotent element | |||||||||||
\(\ds \) | \(=\) | \(\ds x \circ y + x \circ z - 2 x \circ y \circ x \circ z\) | $\circ$ is commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x \circ y} \oplus \paren {x \circ z}\) | Definition of $\oplus$ |
$\Box$
Therefore, having verified all ring axioms, we conclude $\struct {A, \oplus, \circ}$ is a ring.
By assumption all $x \in A$ are idempotent elements for $\circ$.
Thus $\circ$ is an idempotent operation on $A$.
Consequently, $\struct {A, \oplus, \circ}$ is an idempotent ring.
$\blacksquare$
Also see
Sources
- 2008: Paul Halmos and Steven Givant: Introduction to Boolean Algebras ... (previous) ... (next): $\S 1$: Exercise $7$