Rotating Indices Property of Vector Triple Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a$, $\mathbf b$ and $\mathbf c$ be vectors in a Euclidean $3$-space.

Then:

$\mathbf a \times \paren {\mathbf b \times \mathbf c} + \mathbf b \times \paren {\mathbf c \times \mathbf a} + \mathbf c \times \paren {\mathbf a \times \mathbf b} = 0$

where $\mathbf a \times \paren {\mathbf b \times \mathbf c}$ denotes the vector triple product operator.


Proof

\(\ds \) \(\) \(\ds \mathbf a \times \paren {\mathbf b \times \mathbf c} + \mathbf b \times \paren {\mathbf c \times \mathbf a} + \mathbf c \times \paren {\mathbf a \times \mathbf b}\)
\(\ds \) \(=\) \(\ds \paren {\mathbf a \cdot \mathbf c} \mathbf b - \paren {\mathbf a \cdot \mathbf b} \mathbf c + \paren {\mathbf b \cdot \mathbf a} \mathbf c - \paren {\mathbf b \cdot \mathbf c} \mathbf a + \paren {\mathbf c \cdot \mathbf b} \mathbf a - \paren {\mathbf c \cdot \mathbf a} \mathbf b\) Lagrange's Formula: $\mathbf a \cdot \mathbf b$ denotes dot product
\(\ds \) \(=\) \(\ds \paren {\mathbf a \cdot \mathbf c} \mathbf b - \paren {\mathbf a \cdot \mathbf b} \mathbf c + \paren {\mathbf a \cdot \mathbf b} \mathbf c - \paren {\mathbf b \cdot \mathbf c} \mathbf a + \paren {\mathbf b \cdot \mathbf c} \mathbf a - \paren {\mathbf a \cdot \mathbf c} \mathbf b\) Dot Product Operator is Commutative
\(\ds \) \(=\) \(\ds 0\) gathering terms and simplifying

$\blacksquare$


Sources