Vector Cross Product is not Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

The vector cross product is not associative.

That is, in general:

$\mathbf a \times \paren {\mathbf b \times \mathbf c} \ne \paren {\mathbf a \times \mathbf b} \times \mathbf c$

for $\mathbf a, \mathbf b, \mathbf c \in \R^3$.


Proof

Proof by Counterexample:

Let:

\(\ds \mathbf a\) \(=\) \(\ds \begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix}\)
\(\ds \mathbf b\) \(=\) \(\ds \begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix}\)
\(\ds \mathbf c\) \(=\) \(\ds \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix}\)

be vectors in the real Euclidean space $\R^3$.

\(\ds \mathbf a \times \paren {\mathbf b \times \mathbf c}\) \(=\) \(\ds \mathbf a \times \paren {\begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix} }\)
\(\ds \) \(=\) \(\ds \mathbf a \times \begin {bmatrix} 1 \\ -1 \\ 0 \end {bmatrix}\)
\(\ds \) \(=\) \(\ds \begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ -1 \\ 0 \end {bmatrix}\)
\(\ds \) \(=\) \(\ds \begin {bmatrix} 0 \\ 0 \\ -1 \end {bmatrix}\)
\(\ds \paren {\mathbf a \times \mathbf b} \times \mathbf c\) \(=\) \(\ds \paren {\begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix} } \times \mathbf c\)
\(\ds \) \(=\) \(\ds \begin {bmatrix} 0 \\ 0 \\ 1 \end {bmatrix} \times \mathbf c\)
\(\ds \) \(=\) \(\ds \begin {bmatrix} 0 \\ 0 \\ 1 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix}\)
\(\ds \) \(=\) \(\ds \begin {bmatrix} -1 \\ 1 \\ 0 \end {bmatrix}\)

$\blacksquare$


Sources