Rotation of Cartesian Axes around Vector

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf r$ be a vector in space.

Let a Cartesian plane $\CC$ be established such that:

the initial point of $\mathbf r$ is at the origin $O$
the terminal point of $\mathbf r$ is the point $P$.

Let $\tuple {X, Y}$ be the coordinates of $P$ under $\CC$.


Let $\CC$ be rotated about $O$ to $\CC'$, through an angle $\varphi$ in the anticlockwise direction, while keeping $\mathbf r$ fixed.

Let $\tuple {X', Y'}$ be the coordinates of $P$ under $\CC'$.


Then:

\(\ds X'\) \(=\) \(\ds X \cos \varphi + Y \sin \varphi\)
\(\ds Y'\) \(=\) \(\ds -X \sin \varphi + Y \cos \varphi\)


Proof

Rotation-of-Cartesian-Plane-around-Vector.png


With reference to the above diagram:

$X P X' = \varphi$

and so:

$OX' = OX \cos \varphi + PX \sin \varphi$

and:

$OY' = OY \cos \varphi - PY \cos \varphi$

Hence the result.

$\blacksquare$


Sources