Rule of Assumption/Boolean Interpretation
Jump to navigation
Jump to search
Definition
The truth value of a propositional formula $\mathbf A$ under a boolean interpretation $v$ is given by:
- $\map v {\mathbf A} = \begin{cases} \T & : \map v {\mathbf A} = \T \\ \F & : \map v {\mathbf A} = \F \end{cases}$
Sources
- 1964: Donald Kalish and Richard Montague: Logic: Techniques of Formal Reasoning ... (previous) ... (next): $\text{II}$: 'AND', 'OR', 'IF AND ONLY IF': $\S 6 \ (1)$
- 1996: H. Jerome Keisler and Joel Robbin: Mathematical Logic and Computability ... (previous) ... (next): $\S 1.5$: Semantics of Propositional Logic