Sample Matrix Independence Test/Examples/Linear Independence of Powers

From ProofWiki
Jump to navigation Jump to search



Example of Sample Matrix Independence Test: Linear Independence of Powers

Let $V$ be the vector space of all continuous functions on $\R$.

Let $n \ge 1$ be an integer and define:

$S = \set {1, x, \ldots, x^{n - 1} }$

$S$ is a linearly independent subset of $V$.


Proof

Choose samples $x_j = j$, $j = 1, \ldots, n$ from set $\R$.

Define $\map {f_j} x = x^{j - 1}$ for $1 \le j \le n$.

Then the sample matrix is:

$S = \begin{bmatrix}

1 & 1 & \cdots & 1\\ 1 & 2 & \cdots & 2^{n - 1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & n & \cdots & n^{n - 1} \\ \end{bmatrix}$

Matrix $S$ is an invertible Vandermonde matrix.

Then functions $f_1, \ldots, f_n$ are linearly independent.

$\blacksquare$