Category:Sample Matrix Independence Test

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Sample Matrix Independence Test:


Let $V$ be a vector space of real or complex-valued functions on a set $J$.

Let $f_1, \ldots, f_n$ be functions in $V$.

Let $x_1, \ldots, x_n$ from $J$ be given.

Define the sample matrix:

$S = \begin{bmatrix} \map {f_1} {x_1} & \cdots & \map {f_n} {x_1} \\ \vdots & \ddots & \vdots \\ \map {f_1} {x_n} & \cdots & \map {f_n} {x_n} \\ \end{bmatrix}$

Let $S$ be nonsingular.

Then $f_1, \ldots, f_n$ are linearly independent in $V$.