Secant in terms of Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number such that $\cos x \ne 0$.

Then:

\(\ds \sec x\) \(=\) \(\ds +\sqrt {\tan ^2 x + 1}\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \sec x\) \(=\) \(\ds -\sqrt {\tan ^2 x + 1}\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

where $\sec$ denotes the real secant function and $\tan$ denotes the real tangent function.


Proof

\(\ds \sec^2 x - \tan^2 x\) \(=\) \(\ds 1\) Difference of Squares of Secant and Tangent
\(\ds \leadsto \ \ \) \(\ds \sec^2 x\) \(=\) \(\ds \tan^2 x + 1\)
\(\ds \leadsto \ \ \) \(\ds \sec x\) \(=\) \(\ds \pm \sqrt {\tan ^2 x + 1}\)


Also, from Sign of Secant:

If there exists integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$, then $\sec x > 0$.
If there exists integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$, then $\sec x < 0$.


When $\cos x = 0$, $\sec x$ and $\tan x$ is undefined.

$\blacksquare$


Also see