Second Order ODE/y'' - x f(x) y' + f(x) y = 0
Jump to navigation
Jump to search
Theorem
The second order ODE:
- $(1): \quad y' ' - x \, \map f x y' + \map f x y = 0$
has the general solution:
- $\ds y = C_1 x + C_2 x \int x^{-2} e^{\int x \, \map f x \rd x} \rd x$
Proof
Note that:
\(\ds y_1\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds {y_1}'\) | \(=\) | \(\ds 1\) | Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds {y_1}' '\) | \(=\) | \(\ds 0\) | Derivative of Constant |
Substituting into $(1)$:
\(\ds y' ' - x \map f x y' + \map f x y\) | \(=\) | \(\ds 0 - x \map f x 1 + \map f x x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
and so it has been demonstrated that:
- $y_1 = x$
is a particular solution of $(1)$.
$(1)$ is in the form:
- $y' ' + \map P x y' + \map Q x y = 0$
where:
- $\map P x = -x \map f x$
From Particular Solution to Homogeneous Linear Second Order ODE gives rise to Another:
- $\map {y_2} x = \map v x \map {y_1} x$
where:
- $\ds v = \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x$
is also a particular solution of $(1)$.
We have that:
\(\ds \int P \rd x\) | \(=\) | \(\ds \int \paren {-x \map f x} \rd x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{-\int P \rd x}\) | \(=\) | \(\ds e^{-\int \paren {-x \map f x} \rd x}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{\int x \map f x \rd x}\) |
Hence:
\(\ds v\) | \(=\) | \(\ds \int \dfrac 1 { {y_1}^2} e^{-\int P \rd x} \rd x\) | Definition of $v$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \dfrac 1 {x^2} e^{\int x \map f x \rd x} \rd x\) | as $y_1 = x$ |
and so:
\(\ds y_2\) | \(=\) | \(\ds v y_1\) | Definition of $y_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \int x^{-2} e^{\int x \map f x \rd x} \rd x\) |
From Two Linearly Independent Solutions of Homogeneous Linear Second Order ODE generate General Solution:
- $\ds y = C_1 x + C_2 x \int x^{-2} e^{\int x \map f x \rd x} \rd x$
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $\S 3.16$: Problem $8$