Derivative of Constant
Jump to navigation
Jump to search
Theorem
Let $\map {f_c} x$ be the constant function on $\R$, where $c \in \R$.
Then:
- $\map { {f_c}'} x = 0$
Complex Domain
Let $\map {f_c} z$ be the constant function on an open domain $D \in \C$, where $c \in \C$.
Then:
- $\forall z \in D : \map { {f_c}'} z = 0$
Proof
The function $f_c: \R \to \R$ is defined as:
- $\forall x \in \R: \map {f_c} x = c$
Thus:
\(\ds \map { {f_c}'} x\) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac {\map {f_c} {x + \delta x} - \map {f_c} x} {\delta x}\) | Definition of Differentiation | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac {c - c} {\delta x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{\delta x \mathop \to 0} \frac 0 {\delta x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Also see
This is the converse of Zero Derivative implies Constant Function.
Thus we see that $f$ is the constant function if and only if $\forall x: \map {f'} x = 0$.
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Differentiation: Standard Differential Coefficients
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 13$: General Rules of Differentiation: $13.2$
- 1974: Murray R. Spiegel: Theory and Problems of Advanced Calculus (SI ed.) ... (previous) ... (next): Chapter $4$. Derivatives: Derivatives of Special Functions: $1$
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $5$. Differential Calculus: Appendix: Derivatives of fundamental functions: $1.$ Constant factor
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $6$: Derivatives