Sequence of Prime Primorial minus 1

From ProofWiki
Jump to: navigation, search

Theorem

For prime $p$, let $p \#$ denote the $p$th primorial, defined in the sense that $p \#$ is the product of all primes less than or equal to $p$.

The sequence $\left\langle{p}\right\rangle$ such that $p \# - 1$ is prime begins:

$3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, \ldots$

This sequence is A006794 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Also see


Sources