Set Difference Union Intersection
Jump to navigation
Jump to search
Theorem
- $S = \paren {S \setminus T} \cup \paren {S \cap T}$
Proof 1
\(\ds \paren {S \setminus T} \cup \paren {S \cap T}\) | \(=\) | \(\ds \paren {\paren {S \setminus T} \cup S} \cap \paren {\paren {S \setminus T} \cup T}\) | Union Distributes over Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds S \cap \paren {\paren {S \setminus T} \cup T}\) | Set Difference Union First Set is First Set | |||||||||||
\(\ds \) | \(=\) | \(\ds S \cap \paren {S \cup T}\) | Set Difference Union Second Set is Union | |||||||||||
\(\ds \) | \(=\) | \(\ds S\) | Intersection Absorbs Union |
$\blacksquare$
Proof 2
\(\ds \paren {S \setminus T} \cup \paren {S \cap T}\) | \(=\) | \(\ds S \setminus \paren {T \setminus T}\) | Set Difference with Set Difference is Union of Set Difference with Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds S \setminus \O\) | Set Difference with Self is Empty Set | |||||||||||
\(\ds \) | \(=\) | \(\ds S\) | Set Difference with Empty Set is Self |
$\blacksquare$
Proof 3
- $S \setminus T \subseteq S$
- $S \cap T \subseteq S$
Hence from Union is Smallest Superset:
- $\paren {S \setminus T} \cup \paren {S \cap T} \subseteq S$
Let $s \in S$.
Either:
- $s \in T$, in which case $s \in S \cap T$ by definition of set intersection
or
- $s \notin T$, in which case $s \in S \setminus T$ by definition of set difference.
That is, by definition of set union:
- $s \in \paren {S \setminus T} \cup \paren {S \cap T}$
and so by definition of subset:
- $S \subseteq \paren {S \setminus T} \cup \paren {S \cap T}$
Hence the result by definition of set equality.
$\blacksquare$
Sources
- 1967: George McCarty: Topology: An Introduction with Application to Topological Groups ... (previous) ... (next): Chapter $\text{I}$: Sets and Functions: Exercise $\text{B ix}$
- 2000: James R. Munkres: Topology (2nd ed.) ... (previous) ... (next): $1$: Set Theory and Logic: $\S 1$: Fundamental Concepts: Exercise $1.2 \ \text{(i)}$
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): Appendix $\text{A}.2$: Theorem $\text{A}.11$