Set Union/Examples/2 Arbitrarily Chosen Sets of Complex Numbers
Jump to navigation
Jump to search
Example of Set Union
Let:
\(\ds A\) | \(=\) | \(\ds \set {3, -i, 4, 2 + i, 5}\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \set {-i, 0, -1, 2 + i}\) |
Then:
- $A \cup B = \set {3, -i, 0, -1, 4, 2 + i, 5}$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: Point Sets: $46 \ \text {(a)}$