Set is Subset of Union/General Result

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\mathcal P \left({S}\right)$ be the power set of $S$.

Let $\mathbb S \subseteq \mathcal P \left({S}\right)$.


Then:

$\forall T \in \mathbb S: T \subseteq \bigcup \mathbb S$


Proof

Let $x \in T$ for some $T \in \mathbb S$.

Then:

\(\ds x\) \(\in\) \(\ds T\)
\(\ds \implies \ \ \) \(\ds x\) \(\in\) \(\ds \bigcup \mathbb S\) Definition of Set Union
\(\ds \implies \ \ \) \(\ds T\) \(\subseteq\) \(\ds \bigcup \mathbb S\) Definition of Subset


As $T$ was arbitrary, it follows that:

$\forall T \in \mathbb S: T \subseteq \bigcup \mathbb S$

$\blacksquare$