Sides of Orthic Triangle of Acute Triangle/Proof

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be an acute triangle with sides $a$, $b$ and $c$ opposite vertices $A$, $B$ and $C$ respectively.

Let $\triangle DEF$ be the orthic triangle of $\triangle ABC$.


Then the sides of $\triangle DEF$ are $a \cos A$, $b \cos B$ and $c \cos C$.


Proof

Orthic-Triangle.png

Let $H$ be the orthocenter of $\triangle ABC$.

Let $R$ be the circumradius of $\triangle ABC$.

\(\ds \dfrac {EF} {\sin A}\) \(=\) \(\ds \dfrac {AE} {\sin \angle AFE}\) Law of Sines for $\triangle AFE$
\(\ds \) \(=\) \(\ds \dfrac {c \cos A} {\sin C}\)
\(\ds \) \(=\) \(\ds 2 R \cos A\)
\(\ds \leadsto \ \ \) \(\ds EF\) \(=\) \(\ds 2 R \cos A \sin A\)
\(\ds \) \(=\) \(\ds a \cos A\)



The same argument mutatis mutandis can be applied to $DF$ and $DE$.

Hence the result.

$\blacksquare$


Sources