Sigma-Algebra Generated by Complements of Generators

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Sigma$ be a $\sigma$-algebra on a set $X$.

Let $\GG$ be a generator for $\Sigma$.


Then:

$\GG' := \set {X \setminus G: G \in \GG}$

the set of relative complements of $\GG$, is also a generator for $\Sigma$.


Proof

\(\ds \forall G \in \GG: \, \) \(\ds G\) \(\in\) \(\ds \Sigma\) Definition of Generator of Sigma-Algebra
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG: \, \) \(\ds X \setminus G\) \(\in\) \(\ds \Sigma\) Definition of Sigma-Algebra: $\text{(SA3)}$
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG': \, \) \(\ds G\) \(\in\) \(\ds \Sigma\)
\(\ds \leadsto \ \ \) \(\ds \map \sigma {\GG'}\) \(\subseteq\) \(\ds \Sigma\) Definition of Sigma-Algebra Generated by Collection of Subsets
\(\ds \forall G \in \GG': \, \) \(\ds G\) \(\in\) \(\ds \map \sigma {\GG'}\) Definition of Sigma-Algebra Generated by Collection of Subsets
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG: \, \) \(\ds X \setminus G\) \(\in\) \(\ds \map \sigma {\GG'}\)
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG: \, \) \(\ds X \setminus \paren {X \setminus G}\) \(\in\) \(\ds \map \sigma {\GG'}\) Definition of Sigma-Algebra: $\text{(SA3)}$
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG: \, \) \(\ds X \cap G\) \(\in\) \(\ds \map \sigma {\GG'}\) Set Difference with Set Difference
\(\ds \leadsto \ \ \) \(\ds \forall G \in \GG: \, \) \(\ds G\) \(\in\) \(\ds \map \sigma {\GG'}\) Intersection with Subset is Subset
\(\ds \leadsto \ \ \) \(\ds \Sigma\) \(\subseteq\) \(\ds \map \sigma {\GG'}\) Definition of Generator of Sigma-Algebra
\(\ds \leadsto \ \ \) \(\ds \Sigma\) \(=\) \(\ds \map \sigma {\GG'}\) Definition 2 of Set Equality

Hence the result.

$\blacksquare$