# Sign of Function Matches Sign of Definite Integral

## Theorem

Let $f$ be a real function continuous on some closed interval $\closedint a b$, where $a < b$.

Then:

If $\forall x \in \closedint a b: \map f x \ge 0$ then $\ds \int_a^b \map f x \rd x \ge 0$
If $\forall x \in \closedint a b: \map f x > 0$ then $\ds \int_a^b \map f x \rd x > 0$
If $\forall x \in \closedint a b: \map f x \le 0$ then $\ds \int_a^b \map f x \rd x \le 0$
If $\forall x \in \closedint a b: \map f x < 0$ then $\ds \int_a^b \map f x \rd x < 0$

## Proof

From Continuous Real Function is Darboux Integrable, the definite integrals under discussion are guaranteed to exist.

Consider the case where $\forall x \in \closedint a b: \map f x \ge 0$.

Define a constant mapping:

$f_0: \closedint a b \to \R$:
$\map {f_0} x = 0$

Then:

 $\ds \map {f_0} x$ $\le$ $\ds \map f x$ for any $x \in \closedint a b$: recall $\map f x \ge 0$ $\ds \leadsto \ \$ $\ds \int_a^b \map {f_0} x \rd x$ $\le$ $\ds \int_a^b \map f x \rd x$ Relative Sizes of Definite Integrals $\ds \leadsto \ \$ $\ds 0 \paren {b - a}$ $\le$ $\ds \int_a^b \map f x \rd x$ Definite Integral of Constant $\ds \leadsto \ \$ $\ds \int_a^b \map f x \rd x$ $\ge$ $\ds 0$

The proofs of the other cases are similar.

$\blacksquare$