Simple Infinite Continued Fraction Converges
Jump to navigation
Jump to search
Theorem
Let $C = (a_0, a_1, \ldots)$ be a simple infinite continued fraction in $\R$.
Then $C$ converges.
Proof
We need to show that for any SICF its sequence of convergents $\sequence {C_n}$ always tends to a limit.
Let $\epsilon > 0$.
For $m > n \ge \max \set {5, \dfrac 1 \epsilon}$:
\(\ds \size {C_m - C_n}\) | \(\le\) | \(\ds \size {C_m - C_{m - 1} } + \cdots + \size {C_{n + 1} - C_n}\) | Triangle Inequality | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {q_m q_{m - 1} } + \cdots + \frac 1 {q_{n + 1} q_n}\) | Difference between Adjacent Convergents of Simple Continued Fraction | |||||||||||
\(\ds \) | \(<\) | \(\ds \frac 1 {m \paren {m - 1} } + \cdots + \frac 1 {\paren {n + 1} n}\) | Lower Bounds for Denominators of Simple Continued Fraction | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = n}^{m - 1} \frac 1 {k \paren {k + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = n}^{m - 1} \paren {\frac 1 k - \frac 1 {k + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 n - \frac 1 m\) | Telescoping Series: Example 1 | |||||||||||
\(\ds \) | \(<\) | \(\ds \frac 1 n\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \epsilon\) |
So $\sequence {C_n}$ is indeed a Cauchy sequence.
Hence the result.
$\blacksquare$