Triangle Inequality

From ProofWiki
Jump to navigation Jump to search


Real Numbers

Let $x, y \in \R$ be real numbers.

Let $\size x$ denote the absolute value of $x$.


$\size {x + y} \le \size x + \size y$

Complex Numbers

Let $z_1, z_2 \in \C$ be complex numbers.

Let $\cmod z$ denote the modulus of $z$.


$\cmod {z_1 + z_2} \le \cmod {z_1} + \cmod {z_2}$

Vectors in $\R^n$

Let $\mathbf{x}$,$\mathbf{y}$ be vectors in $\R^n$.

Let $\left\Vert{\cdot}\right\Vert$ denote vector length.


$\left \Vert {\mathbf{x} + \mathbf{y} }\right \Vert \le \left \Vert {\mathbf{x}}\right \Vert + \left \Vert { \mathbf{y} }\right \Vert$

If the two vectors are scalar multiples where said scalar is non-negative, an equality holds:

$\exists \lambda \in \R, \lambda \ge 0: \mathbf x = \lambda \mathbf y \iff \left \Vert {\mathbf x + \mathbf y } \right \Vert = \left \Vert { \mathbf x } \right \Vert + \left \Vert { \mathbf y } \right \Vert$

Triangle Inequality for Integrals

Let $\left({X, \Sigma, \mu}\right)$ be a measure space.

Let $f: X \to \overline{\R}$ be a $\mu$-integrable function.


$\displaystyle \left\vert{\int_X f \rd \mu}\right\vert \le \int_X \left\vert{f}\right\vert \rd \mu$

Also see

It is in fact a special case of triangle inequality in the Euclidean metric space.