Sine Integral Function is Bounded

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Si: \R \to \R$ denote the sine integral function.


Then $\Si$ is bounded.


Proof

By Limit at Infinity of Sine Integral Function and its corollary:

\(\ds \lim _{x \mathop \to +\infty} \size {\map \Si x}\) \(=\) \(\ds \lim _{x \mathop \to -\infty} \size {\map \Si x}\)
\(\ds \) \(=\) \(\ds \dfrac \pi 2\)

Thus there is a $M > 0$ such that for all $x \in \R$:

$\size x > M \implies \size {\map \Si x} \le \dfrac \pi 2 + 1$

On the other hand, if $\size x \le M$, then:

\(\ds \size {\map \Si x}\) \(=\) \(\ds \size {\int_0 ^x \dfrac {\sin t} t \rd t }\)
\(\ds \) \(\le\) \(\ds \int _0 ^{\size x} \size { \dfrac {\sin t} t} \rd t\)
\(\ds \) \(\le\) \(\ds \int _0 ^{\size x} 1 \rd t\)
\(\ds \) \(=\) \(\ds \size x\)
\(\ds \) \(\le\) \(\ds M\)


Thus:

$\forall x \in \R : \size {\map \Si x} \le \max \set {\dfrac \pi 2 + 1 , M}$