Sine of Complement equals Cosine/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \sin {\dfrac \pi 2 - \theta} = \cos \theta$


Proof

\(\ds \map \sin {\dfrac \pi 2 - \theta}\) \(=\) \(\ds \map \Im {e^{i \paren {\frac \pi 2 - \theta} } }\) Euler's Formula
\(\ds \) \(=\) \(\ds \map \Im {e^{i \frac \pi 2} e^{-i \theta} }\) Exponent Combination Laws
\(\ds \) \(=\) \(\ds \map \Im {\paren {\cos \dfrac \pi 2+i \sin \dfrac \pi 2} e^{-i \theta} }\) Euler's Formula
\(\ds \) \(=\) \(\ds \map \Im {i e^{-i \theta} }\) Cosine of Right Angle, Sine of Right Angle
\(\ds \) \(=\) \(\ds \map \Re {e^{-i \theta} }\)
\(\ds \) \(=\) \(\ds \map \cos {-\theta}\) Euler's Formula
\(\ds \) \(=\) \(\ds \cos \theta\) Cosine Function is Even

$\blacksquare$