Solution of Pell's Equation is a Convergent
Jump to navigation
Jump to search
Theorem
Let $x = a, y = b$ be a positive solution to Pell's equation $x^2 - n y^2 = 1$.
Then $\dfrac a b$ is a convergent of $\sqrt n$.
Proof
Let $a^2 - n b^2 = 1$.
Then we have:
- $\paren {a - b \sqrt n} \paren {a + b \sqrt n} = 1$.
So:
- $a - b \sqrt n = \dfrac 1 {a + b \sqrt n} > 0$
and so $a > b \sqrt n$.
Therefore:
\(\ds \size {\sqrt n - \frac a b}\) | \(=\) | \(\ds \frac {a - b \sqrt n} b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {b \paren {a + b \sqrt n} }\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \frac 1 {b \paren {b \sqrt n + b \sqrt n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 b^2 \sqrt n}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \frac 1 {2 b^2}\) |
The result follows from Condition for Rational to be Convergent.
$\blacksquare$