Condition for Rational to be Convergent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be an irrational number.

Let the rational number $\dfrac a b$ satisfy the inequality:

$\size {x - \dfrac a b} < \dfrac 1 {2 b^2}$

Then $\dfrac a b$ is a convergent of $x$.


Proof

Aiming for a contradiction, suppose $\size {x - \dfrac a b} < \dfrac 1 {2 b^2}$, but that $\dfrac a b$ is not one of the convergents $\dfrac {p_n} {q_n}$ of $x$.

Let $r$ be the unique integer for which $q_r \le b \le q_{r + 1}$.



Then:

\(\ds \size {q_r x - p_r}\) \(\le\) \(\ds \size {b x - a}\) Convergents are Best Approximations
\(\ds \) \(=\) \(\ds b \size {x - \frac a b}\)
\(\ds \) \(<\) \(\ds b \times \frac 1 {2 b^2}\)
\(\ds \) \(=\) \(\ds \frac 1 {2 b}\)

Therefore:

$q_r \size {x - \dfrac {p_r} {q_r} }< \dfrac 1 {2 b}$

and so:

$\size {x - \dfrac {p_r} {q_r} } < \dfrac 1 {2 q_r b}$


Hence:

\(\ds \size {\frac a b - \frac {p_r} {q_r} }\) \(\le\) \(\ds \size {x - \frac {p_r} {q_r} } + \size {x - \frac a b}\) Triangle Inequality
\(\text {(1)}: \quad\) \(\ds \) \(<\) \(\ds \frac 1 {2 q_r b} + \frac 1 {2b^2}\)


Now note that $q_r a - p_r b$ is a integer.

However, by hypothesis $\dfrac a b$ is not one of the convergents $\dfrac {p_n} {q_n}$ of $x$.

Thus $\dfrac a b \ne \dfrac {p_r} {q_r}$.

But we have:

\(\ds \size {\frac a b - \frac {p_r} {q_r} }\) \(=\) \(\ds \size {\frac {q_r a - p_r b} {q_r b} }\)
\(\text {(2)}: \quad\) \(\ds \) \(\ge\) \(\ds \frac 1 {q_r b}\)

So, combining results $(1)$ and $(2)$, we get:

$\dfrac 1 {q_r b} < \dfrac 1 {2 q_r b} + \dfrac 1 {2 b^2}$

This simplifies to $q_r > b$.

But by hypothesis $r$ be the unique integer for which $q_r \le b \le q_{r + 1}$.


From this contradiction it follows that $\dfrac a b$ is one of the convergents of $x$

$\blacksquare$