Solution to Legendre's Differential Equation
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
The solution of Legendre's differential equation:
- $\paren {1 - x^2} \dfrac {\d^2 y} {\d x^2} - 2 x \dfrac {\d y} {\d x} + p \paren {p + 1} y = 0$
can be obtained by Power Series Solution Method.
![]() | This page has been identified as a candidate for refactoring of medium complexity. In particular: Include the actual solution here in the Theorem section and then proceed to derive each instance of that solution in the Proof section. If necessary, split it up into bits. At the moment it is too amorphous to be able to be followed easily. My eyes are too sore to do a good job on this tonight so I won't. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Proof
Let:
- $\ds y = \sum_{n \mathop = 0}^\infty a_n x^{k - n}$
such that:
- $a_0 \ne 0$
Differentating with respect to $x$:
- $\ds \dot y = \sum_{n \mathop = 0}^\infty a_n \paren {k - n} x^{k - n - 1}$
- $\ds \ddot y = \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2}$
Substituting in the original equation:
\(\ds \paren {1 - x^2} \ddot y - 2 x \dot y + p \paren {p + 1} y\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 - x^2} \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2} - 2 x \sum_{n \mathop = 0}^\infty a_n \paren {k - n} x^{k - n - 1} + p \paren {p + 1} \sum_{n \mathop = 0}^\infty a_n x^{k - n}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2} - x^2 \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2}\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} - 2 x \sum_{n \mathop = 0}^\infty a_n \paren {k - n} x^{k - n - 1} + p \paren {p + 1} \sum_{n \mathop = 0}^\infty a_n x^{k - n}\) | \(=\) | \(\ds 0\) |
The summations are dependent upon $n$ and not $x$.
Therefore it is a valid operation to multiply the $x$'s into the summations, thus:
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2}\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} - \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n} - 2 \sum_{n \mathop = 0}^\infty a_n \paren {k - n} x^{k - n} + p \paren {p + 1} \sum_{n \mathop = 0}^\infty a_n x^{k - n}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 0}^\infty a_n \paren {k - n} \paren {k - n - 1} x^{k - n - 2}\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} + \sum_{n \mathop = 0}^\infty a_n x^{k - n} \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n - 1} - 2 \paren {k - n} }\) | \(=\) | \(\ds 0\) |
Increasing the summation variable $n$ to $n + 2$:
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 2}^\infty a_{n - 2} \paren {k - n + 2} \paren {k - n + 1} x^{k - n}\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} + \sum_{n \mathop = 0}^\infty a_n x^{k - n} \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} }\) | \(=\) | \(\ds 0\) |
Taking the first 2 terms of the second summation out:
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 2}^\infty a_{n - 2} \paren {k - n + 2} \paren {k - n + 1} x^{k - n}\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} + a_0 x^k \paren {p \paren {p + 1} - k \paren {k + 1} } + a_1 x^{k - 1} \paren {p \paren {p + 1} - k \paren {k - 1} }\) | \(\) | \(\ds \) | ||||||||||||
\(\ds {} + \sum_{n \mathop = 2}^\infty a_{n - 2} x^{k - n} + a_n \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} }\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a_0 x^k \paren {p \paren {p + 1} - k \paren {k + 1} } + a_1 x^{k - 1} \paren {\paren {p + 1} - k \paren {k - 1} }\) | \(\) | \(\ds \) | |||||||||||
\(\ds {} + \sum_{n \mathop = 2}^\infty x^{k - n} \paren {a_{n - 2} \paren {k - n - 2} \paren {k - n + 1} + a_n \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} } }\) | \(=\) | \(\ds 0\) |
Equating each term to $0$:
\(\text {(1)}: \quad\) | \(\ds a_0 x^k \paren {p \paren {p + 1} - k \paren {k + 1} }\) | \(=\) | \(\ds 0\) | |||||||||||
\(\text {(2)}: \quad\) | \(\ds a_1 x^{k - 1} \paren {p \paren {p + 1} - k \paren {k - 1} }\) | \(=\) | \(\ds 0\) | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \sum_{n \mathop = 2}^\infty x^{k - n} \paren {a_{n - 2} \paren {k - n - 2} \paren {k - n + 1} + a_n \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} } }\) | \(=\) | \(\ds 0\) |
Take equation $(1)$:
- $a_0 x^k \paren {p \paren {p + 1} - k \paren {k + 1} } = 0$
It is assumed that $a_0 \ne 0$ and $x^k$ can never be zero for any value of $k$.
Thus:
\(\ds p \paren {p + 1} - k \paren {k + 1}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds p^2 - k^2 + p - k\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {p - k} \paren {p + k} + \paren {p - k}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {p - k} \paren {p + k + 1}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds p - k\) | \(=\) | \(\ds 0\) | |||||||||||
\(\, \ds \lor \, \) | \(\ds p + k + 1\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds k\) | \(=\) | \(\ds p\) | |||||||||||
\(\, \ds \lor \, \) | \(\ds k\) | \(=\) | \(\ds p - 1\) |
Take equation $(2)$:
- $a_1 x^{k - 1} \paren {p \paren {p + 1} - k \paren {k - 1} } = 0$
As before, it is assumed that $x^{k - 1}$ can never be zero for any value of $k$.
Thus:
\(\ds a_1 \paren {p \paren {p + 1} - k \paren {k - 1} }\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds a_1 k\) | \(=\) | \(\ds 0\) | substituting the value of $k$ from $(1)$ | |||||||||||
\(\ds a_1\) | \(=\) | \(\ds 0\) | as $2 k \ne 0$ |
Take equation $(3)$:
- $\ds \sum_{n \mathop = 2}^\infty x^{k - n} \paren {a_{n - 2} \paren {k - n - 2} \paren {k - n + 1} + a_n \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} } } = 0$
As before, it is assumed that $x^{k - n}$ can never be zero for any value of $k$.
Thus:
\(\ds 0\) | \(=\) | \(\ds a_{n - 2} \paren {k - n - 2} \paren {k - n + 1} + a_n \paren {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a_n\) | \(=\) | \(\ds -\frac {\paren {k - n + 2} \paren {k - n + 1} } {p \paren {p + 1} - \paren {k - n} \paren {k - n + 1} } a_{n - 2}\) |
Since Legendre's differential equation is a second order ODE, it has two independent solutions.
Solution 1 (for $k = p$)
\(\ds y\) | \(=\) | \(\ds x^p \sum_{n \mathop = 0}^\infty a_n x^{-n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^k \paren {a_0 + a_1 x^{-1} + a_2 x^{-2} + a_3 x^{-3} + a_4 x^{-4} + \dotsb}\) |
\(\ds a_n\) | \(=\) | \(\ds -\frac {\paren {p - n + 2} \paren {p - n + 1} } {p \paren {p + 1} - \paren {p - n} \paren {p - n + 1} } a_{n - 2}\) | from equation $(4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {\paren {p - n + 2} \paren {p - n + 1} } {n \paren {2 p - n + 1} } a_{n - 2}\) |
Thus:
\(\ds a_2\) | \(=\) | \(\ds -\frac {p \paren {p - 1} } {2 \paren {2 p - 1} } a_0\) | for $n = 2$ | |||||||||||
\(\ds a_4\) | \(=\) | \(\ds -\frac {\paren {p - 2} \paren {p - 3} } {4 \paren {2 p - 3} } a_2\) | for $n = 4$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {p \paren {p - 1} \paren {p - 2} \paren {p - 3} } {2 \cdot 4 \paren {2 p - 1} \paren {2 p - 3} } a_0\) | ||||||||||||
\(\ds a_6\) | \(=\) | \(\ds -\frac {\paren {p - 4} \paren {p - 5} } {6 \paren {2 p - 5} } a_4\) | for $n = 6$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {p \paren {p - 1} \paren {p - 2} \paren {p - 3} \paren {p - 4} \paren {p - 5} } {2 \cdot 4 \cdot 6 \paren {2 p - 1} \paren {2 p - 3} \paren {2 p - 5} } a_0\) |
Similarly:
\(\ds a_{2 n}\) | \(=\) | \(\ds \paren {-1}^n \frac {p \paren {p - 1} \paren {p - 2} \paren {p - 3} \dotsm \paren {p - 2 n - 1} } {\paren {2 \cdot 4 \cdot 6 \dotsm 2 n} \paren {2 p - 1} \paren {2 p - 3} \paren {2 p - 5} \dotsm \paren {2 p - 2 n + 1} } a_0\) |
Also:
- $a_3 = a_5 = a_7 = \dotsb = a_{2 n + 1} = a_1 = 0$
Substituting for $a_n$:
\(\ds y\) | \(=\) | \(\ds a_0 x^k \leftparen {1 + \frac {-p \paren {p - 1} } {2 \paren {2 p - 1} } x^{-2} + \frac {p \paren {p - 1} \paren {p - 2} \paren {p - 3} } {2 \cdot 4 \paren {2 p - 1} \paren {2 p - 3} } x^{-4} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dotsb\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\paren {-1}^n \frac {-p \paren {p - 1} \paren {p - 2} \dotsm \paren {p - 2 n + 1} } {\paren {2 \cdot 4 \cdot 6 \dots 2 n} \paren {2 p - 1} \paren {2 p - 3} \dotsm \paren {p - 2 n + 1} } x^{-2 n} + \dotsb}\) |
$\Box$
Solution 2 (for $k = p - 1$)
\(\ds y\) | \(=\) | \(\ds x^{-p - 1} \sum_{n \mathop = 0}^\infty a_n x^{-n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^{-k - 1} \paren {a_0 + a_1 x^{-1} + a_2 x^{-2} + a_3 x^{-3} + a_4 x^{-4} + \dotsb}\) |
![]() | The validity of the material on this page is questionable. In particular: Should it be $x^{-k - 1}$ in the above, as $k = p - 1$? You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by resolving the issues. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Questionable}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
\(\ds a_n\) | \(=\) | \(\ds -\frac {\paren {-p - 1 - n + 2} \paren {-p - 1 - n + 1} } {p \paren {p + 1} - \paren {- p - 1 - n} \paren {-p - n} } a_{n - 2}\) | from equation $(4)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {p + n - 1} \paren {p + n} } {n \paren {2 p + n + 1} } a_{n - 2}\) |
Thus:
\(\ds a_2\) | \(=\) | \(\ds \frac {\paren {p + 1} \paren {p + 2} } {2 \paren {2 p + 3} } a_0\) | for $n = 2$ | |||||||||||
\(\ds a_4\) | \(=\) | \(\ds \frac {\paren {p + 3} \paren {p + 4} } {4 \paren {2 p + 5} } a_2\) | for $n = 4$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \paren {p + 4} } {2 \cdot 4 \paren {2 p + 3} \paren {2 p + 5} } a_0\) | ||||||||||||
\(\ds a_6\) | \(=\) | \(\ds \frac {\paren {p + 5} \paren {p + 6} } {6 \paren {2 p + 7} } a_4\) | for $n = 6$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \paren {p + 4} \paren {p + 5} \paren {p + 6} } {2 \cdot 4 \cdot 6 \paren {2 p + 3} \paren {2 p + 5} \paren {2 p + 7} } a_0\) |
Similarly:
\(\ds a_{2 n}\) | \(=\) | \(\ds \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \dotsm \paren {p + 2 n} } {\paren {2 \cdot 4 \cdot 6 \dotsm 2 n} \paren {2 p + 3} \paren {2 p + 5} \paren {2 p + 7} \dotsm \paren {2 p + 2 n + 1} } a_0\) |
Also:
- $a_3 = a_5 = a_7 = \dotsb = a_{2 n + 1} = a_1 = 0$
Substituting for $a_n$:
\(\ds y\) | \(=\) | \(\ds a_0 x^{-k - 1} \leftparen {1 + \frac {\paren {p + 1} \paren {p + 2} } {2 \paren {2 p + 3} } x^{-2} + \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \paren {p + 4} } {2 \cdot 4 \paren {2 p + 3} \paren {2 p + 5} } x^{-4} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dotsb\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\paren {-1}^n \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \dotsm \paren {p + 2 n} } {\paren {2 \cdot 4 \cdot 6 \dotsm 2 n} \paren {2 p + 3} \paren {2 p + 5} \dotsm \paren {p - 2 n} } x^{-2 n} + \dotsb}\) |
$\Box$
In summary, the two particular solutions are:
\(\ds y\) | \(=\) | \(\ds a_0 x^k \leftparen {1 + \frac {-p \paren {p - 1} } {2 \paren {2 p - 1} } x^{-2} + \frac {p \paren {p - 1} \paren {p - 2} \paren {p - 3} } {2 \cdot 4 \paren {2 p - 1} \paren {2 p - 3} } x^{-4} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dotsb\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\paren {-1}^n \frac {-p \paren {p - 1} \paren {p - 2} \dotsm \paren {p - 2 n + 1} } {\paren {2 \cdot 4 \cdot 6 \dots 2 n} \paren {2 p - 1} \paren {2 p - 3} \dotsm \paren {p - 2 n + 1} } x^{-2 n} + \dotsb}\) |
and:
\(\ds y\) | \(=\) | \(\ds a_0 x^{-k - 1} \leftparen {1 + \frac {\paren {p + 1} \paren {p + 2} } {2 \paren {2 p + 3} } x^{-2} + \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \paren {p + 4} } {2 \cdot 4 \paren {2 p + 3} \paren {2 p + 5} } x^{-4} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dotsb\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \rightparen {\paren {-1}^n \frac {\paren {p + 1} \paren {p + 2} \paren {p + 3} \dotsm \paren {p + 2 n} } {\paren {2 \cdot 4 \cdot 6 \dotsm 2 n} \paren {2 p + 3} \paren {2 p + 5} \dotsm \paren {p - 2 n} } x^{-2 n} + \dotsb}\) |
![]() | Although this article appears correct, it's inelegant. There has to be a better way of doing it. In particular: Express in summation form You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by redesigning it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Improve}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
$\blacksquare$
Also see
The solutions of Legendre's differential equation are known as Legendre polynomials, which are functions of the parameter $p$.
Source of Name
This entry was named for Adrien-Marie Legendre.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 18$: Basic Differential Equations and Solutions: $18.12$: Legendre's equation
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 19$: Basic Differential Equations and Solutions: $19.12$: Legendre's equation