Sophomore's Dream
Jump to navigation
Jump to search
Theorem
Sophomore's Dream refers to two identities discovered in 1697 by Johann Bernoulli.
Definite Integral from $0$ to $1$ of $x^x$
\(\ds \int_0^1 x^x \rd x\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\sum_{n \mathop = 1}^\infty \paren {-n}^{-n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0.78343 \ 05107 \ 12 \ldots\) |
Definite Integral from $0$ to $1$ of $x^{-x}$
\(\ds \int_0^1 x^{-x} \rd x\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty n^{-n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1.29128 \ 5997 \ldots\) |