Space of Bounded Sequences with Supremum Norm forms Banach Space
![]() | This article is complete as far as it goes, but it could do with expansion. In particular: Do for $\C$ and investigate other fields You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Expand}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Theorem
Let $\struct {\map {\ell^\infty} \R, \norm {\, \cdot \,}_\infty}$ be the normed vector space of bounded sequences on $\R$.
Then $\struct {\map {\ell^\infty} \R, \norm {\, \cdot \,}_\infty}$ is a Banach space.
Proof
A Banach space is a normed vector space, where a Cauchy sequence converges with respect to the supplied norm.
To prove the theorem, we need to show that a Cauchy sequence in $\struct {\map {\ell^\infty} \R, \norm {\,\cdot\,}_\infty}$ converges.
We take a Cauchy sequence $\sequence {x_n}_{n \mathop \in \N}$ in $\struct {\map {\ell^\infty} \R, \norm {\,\cdot\,}_\infty}$.
Then we consider the $k$th component and show, that a real Cauchy sequence $\sequence {x_n^{\paren k}}_{n \mathop \in \N}$ converges in $\struct {\R, \size {\, \cdot \,}}$ with the limit $x^{\paren k}$ and denote the entire set as $\mathbf x$.
Finally, we show that $\sequence {\mathbf x_n}_{n \in \N}$, composed of components $x_n^{\paren k},$ converges in $\struct {\map {\ell^\infty} \R, \norm {\,\cdot\,}_\infty}$ with the limit $\mathbf x$.
Let $\sequence {\mathbf x_n}_{n \mathop \in \N}$ be a Cauchy sequence in $\struct {\map {\ell^\infty} \R, \norm{\, \cdot \,}_\infty}$.
Denote the $k$th component of $\mathbf x_n$ by $x_n^{\paren k}$.
$\sequence {x_n^{\paren k}}_{n \mathop \in \N}$ converges in $\struct {\R, \size {\, \cdot \,}}$
Let $\epsilon >0$.
Then:
- $\exists N \in \N : \forall m, n \in \N : m,n > N : \norm {\mathbf x_n - \mathbf x_m}_\infty < \epsilon$
For same $N, m, n$ consider $\size {x_n^{\paren k} - x_m^{\paren k} } $:
\(\ds \size {x_n^{\paren k} - x_m^{\paren k} }\) | \(\le\) | \(\ds \sup_{k \mathop \in \N} \size {x_n^{\paren k} - x_m^{\paren k} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\mathbf x_n - \mathbf x_m}_\infty\) | Definition of Supremum Norm | |||||||||||
\(\ds \) | \(<\) | \(\ds \epsilon\) |
Hence, $\sequence {x_n^{\paren k}}_{n \mathop \in \N}$ is a Cauchy sequence in $\struct {\R, \size {\, \cdot \,}}$.
From Real Number Line is Complete Metric Space, $\R$ is a complete metric space.
Consequently, $\sequence {x_n^{\paren k}}_{n \mathop \in \N}$ converges in $\struct {\R, \size {\, \cdot \,}}$.
$\Box$
Denote the limit $\ds \lim_{n \mathop \to \infty} \sequence {x_n^{\paren k}}_{n \mathop \in \N} = x^{\paren k}$.
Denote $\sequence {x^{\paren k}}_{k \mathop \in \N} = \mathbf x$.
$\mathbf x$ belongs to $\map {\ell^\infty} \R$
From previous lemma, $\sequence {x_n^{\paren k}}_{n \mathop \in \N}$ is a Cauchy sequence in $\struct {\R, \size {\, \cdot \,}}$.
Fix any $n > N$ and $k \in \N$.
Then:
- $\forall m > N : \size {x_n^{\paren k} - x_m^{\paren k} } < \epsilon$
Take the limit $m \to \infty$:
- $\size {x_n^{\paren k} - x^{\paren k}} < \epsilon$
Since $k$ was arbitrary:
\(\ds \forall k \in \N: \, \) | \(\ds \size {x_n^{\paren k} - x^{\paren k} }\) | \(\le\) | \(\ds \sup_{k \mathop \in \N} \size {x_n^{\paren k} - x^{\paren k} }\) | Definition of Supremum of Real Sequence | ||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\mathbf x_n - \mathbf x}_\infty\) | Definition of Supremum Norm | |||||||||||
\(\ds \) | \(<\) | \(\ds \epsilon\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \infty\) |
By definition of space of bounded sequences:
- $\mathbf x_n - \mathbf x \in \ell^{\infty}$
By assumption:
- $\mathbf x_n \in \map {\ell^\infty} \R$
Hence:
- $\mathbf x \in \map {\ell^\infty} \R$
$\Box$
$\sequence {\mathbf x_n}_{n \mathop \in \N}$ converges in $\struct {\map {\ell^\infty} \R, \norm {\, \cdot \,}_\infty}$ to $\mathbf x$
From previous lemma we have that for some $\epsilon > 0$, $N \in \N$ and fixed $n > N$:
- $\norm {\mathbf x_n - \mathbf x}_\infty < \epsilon$
Repeat the same argument for all $\epsilon \in \R_{>0}$ and note that $n$ was arbitrary:
- $\forall \epsilon \in \R_{>0} : \exists N \in \N : \forall n \in \N : n > N \implies \norm {\mathbf x_n - \mathbf x}_\infty < \epsilon$
Therefore, $\sequence {\mathbf x_n}_{n \mathop \in \N}$ converges in $\struct {\map {\ell^\infty} \R, \norm{\, \cdot \,}_\infty}$.
$\blacksquare$
Also see
Sources
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): $\S 1.4$: Normed and Banach spaces. Sequences in a normed space; Banach spaces