Definition:Norm/Vector Space

From ProofWiki
Jump to navigation Jump to search

This page is about Norm on Vector Space. For other uses, see Norm.

Definition

Let $\struct {R, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_R$.

Let $V$ be a vector space over $R$, with zero $0_V$.


A norm on $V$ is a map from $V$ to the nonnegative reals:

$\norm{\,\cdot\,}: V \to \R_{\ge 0}$

satisfying the (vector space) norm axioms:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in V:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = \mathbf 0_V \)      
\((\text N 2)\)   $:$   Positive Homogeneity:      \(\ds \forall x \in V, \lambda \in R:\)    \(\ds \norm {\lambda x} \)   \(\ds = \)   \(\ds \norm {\lambda}_R \times \norm x \)      
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in V:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)      


Division Ring

When the vector space $V$ is the $R$-vector space $R$, the definition reduces to the division ring norm:


Let $\struct {R, +, \circ}$ be a division ring whose zero is denoted $0_R$.


A (multiplicative) norm on $R$ is a mapping from $R$ to the non-negative reals:

$\norm {\,\cdot\,}: R \to \R_{\ge 0}$

satisfying the (ring) multiplicative norm axioms:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in R:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = 0_R \)      
\((\text N 2)\)   $:$   Multiplicativity:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x \circ y} \)   \(\ds = \)   \(\ds \norm x \times \norm y \)      
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in R:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)      


Also presented as

The norm axioms for a vector space are usually defined over the real numbers $\R$ or complex numbers $\C$, and so presented in the form:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in V:\)    \(\ds \norm x = 0 \)   \(\ds \iff \)   \(\ds x = \mathbf 0_V \)      
\((\text N 2)\)   $:$   Positive Homogeneity:      \(\ds \forall x \in V, \lambda \in \GF:\)    \(\ds \norm {\lambda x} \)   \(\ds = \)   \(\ds \size \lambda \norm x \)      where $\GF \in \set {\R, \C}$
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall x, y \in V:\)    \(\ds \norm {x + y} \)   \(\ds \le \)   \(\ds \norm x + \norm y \)      

where $\size \lambda$ denotes either:

the absolute value function on $\R$
the complex modulus on $\C$.

The equivalence of the two definitions is confirmed by:

Absolute Value is Norm
Complex Modulus is Norm.


Also known as

The term length is occasionally seen as an alternative for norm.


Also see


Sources