Space of Simple P-Integrable Functions is Everywhere Dense in Lebesgue Space
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $p \in \R$, $p \ge 1$.
Let $\map {\LL^p} \mu$ be Lebesgue $p$-space for $\mu$.
Let $\map \EE \Sigma \cap \map {\LL^p} \mu$ be the space of $\Sigma$-simple, $p$-integrable functions.
Then $\map \EE \Sigma \cap \map {\LL^p} \mu$ is everywhere dense in $\map {\LL^p} \mu$ with respect to the seminorm topology generated by the singleton $\set {\norm {\; \cdot \;}_p }$.
That is, for all $f \in \map {\LL^p} \mu$ and $\epsilon > 0$ there exists a $g \in \map \EE \Sigma \cap \map {\LL^p} \mu$ such that:
- $\norm {f - g}_p < \epsilon$
![]() | This definition needs to be completed. In particular: Definition:Seminorm Topology and Definition:Locally Convex Topological Vector Space You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding or completing the definition. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{DefinitionWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Proof
For $n \in \N$, we define $D_n : \R_{\ge 0} \to \R_{\ge 0}$ by:
$\quad \map {\Delta _n} y := \begin{cases} \dfrac k {2^n} & : y \in \hointr {\dfrac k {2^n} } {\dfrac {k + 1} {2^n} }, k = 0, 1, \ldots, 2^{2 n} - 1 \\ 0 & : y \ge 2^n \end{cases}$
Clearly, for all $n \in \N$:
- $(1): \quad \forall y \in \R_{\ge 0} : 0 \le \map {\Delta_n} y \le y$
We also have:
- $(2): \quad \ds \forall y \in \R_{\ge 0} : \lim_{n \mathop \to \infty} \map {\Delta_n} y = y$
since:
- $\forall y \in \hointr 0 {2^n} : 0 \le y - \map {\Delta_n} y \le \dfrac 1 {2^n}$
Let:
- $\map {f_n} x := \map \sgn {\map f x} \map {\Delta_n} {\size {\map f x} }$
where:
- $\map \sgn \cdot$ denotes the signum function
- $\size {\, \cdot \,}$ denotes the absolute value.
By Measurable Function is Simple Function iff Finite Image Set:
- $f_n \in \map \EE \Sigma$
By $(2)$, for all $x \in X$:
- $\ds \lim_{n \mathop \to \infty} \map {f_n} x = \map f x$
In view of $(1)$, we have for all $x \in X$:
- $\size {\map {f_n} x} \le \size {\map f x}$
In particular, $f_n \in \map {\LL^p} \mu$.
Moreover, for all $x \in X$:
- $\size {\map {f_n} x - \map f x} \le \size {\map f x} + \size {\map {f_n} x} \le 2 \size {\map f x}$
Thus, by Lebesgue's Dominated Convergence Theorem:
- $\ds \lim_{n \mathop \to \infty} \norm {f_n - f}_p = \paren {\int \lim_{n \mathop \to \infty} \size {f_n - f}^p \rd \mu }^{1/p} = 0$
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $12.11$