Riesz's Convergence Theorem
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Let $p \in \R$, $p \ge 1$.
Let $\sequence {f_n}_{n \mathop \in \N}, f_n: X \to \R$ be a sequence in Lebesgue $p$-space $\map {\LL^p} \mu$.
Suppose that the pointwise limit $f := \ds \lim_{n \mathop \to \infty} f_n$ exists $\mu$-almost everywhere, and that $f \in \map {\LL^p} \mu$.
Then the following are equivalent:
- $(1): \quad \ds \lim_{n \mathop \to \infty} \norm {f - f_n}_p = 0$
- $(2): \quad \ds \lim_{n \mathop \to \infty} \norm {f_n}_p = \norm f_p$
where $\norm {\, \cdot \,}_p$ denotes the $p$-seminorm.
Proof
From $(1)$ to $(2)$
This follows from the reverse triangle inequality:
- $\size {\norm f_p - \norm {f_n}_p} \le \norm {f - f_n}_p$
$\Box$
From $(2)$ to $(1)$
By Power of Absolute Value is Convex Real Function, we have:
- $\forall a, b \in \R : \size {\dfrac {a - b} 2}^p \le \dfrac { {\size a}^p + {\size {-b} }^p} 2 = \dfrac { {\size a}^p + {\size b}^p} 2$
In particular:
- $\map {h_n} x := 2^{p - 1} \paren {\size {\map f x}^p + \size {\map {f_n} x}^p} - \size {\map f x - \map {f_n} x}^p$
is a positive measurable function.
By Fatou's Lemma:
- $\ds \int \liminf_{n \mathop \to \infty} h_n \rd \mu \le \liminf_{n \mathop \to \infty} \int h_n \rd \mu$
Observe:
\(\ds \int \liminf_{n \mathop \to \infty} h_n \rd \mu\) | \(=\) | \(\ds \int \liminf_{n \mathop \to \infty} \paren {2^{p-1} \paren {\size {\map f x}^p + \size {\map {f_n} x}^p} - \size {\map f x - \map {f_n} x}^p} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int 2^{p - 1} \paren {\size {\map f x}^p + \size {\map f x}^p} - \size {\map f x - \map f x}^p \rd \mu\) | as $\ds f = \lim_{n \mathop \to \infty} f_n$ $\mu$-a.e. | |||||||||||
\(\ds \) | \(=\) | \(\ds 2^p \norm {f_n}_p ^p\) |
and:
\(\ds \liminf_{n \mathop \to \infty} \int h_n \rd \mu\) | \(=\) | \(\ds \liminf_{n \mathop \to \infty} \paren {2^{p - 1} \int \size f^p \rd \mu + 2^{p - 1} \int \size {f_n}^p \rd \mu + \int - \size {f - f_n}^p \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \liminf_{n \mathop \to \infty} \paren {2^{p - 1} \norm f_p ^p + 2^{p - 1} \norm {f_n}_p ^p + \int - \size {f - f_n}^p \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2^{p - 1} \norm f_p ^p + 2^{p - 1} \lim_{n \mathop \to \infty} \norm {f_n}_p ^p + \liminf_{n \mathop \to \infty} \int - \size {f - f_n}^p \rd \mu\) | as $\ds \lim_{n \mathop \to \infty} \norm {f_n}_p$ exists | |||||||||||
\(\ds \) | \(=\) | \(\ds 2^p \norm f_p ^p + \liminf_{n \mathop \to \infty} \int - \size {f - f_n}^p \rd \mu\) | as $\ds \lim_{n \mathop \to \infty} \norm {f_n}_p = \norm f_p$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2^p \norm f_p ^p - \limsup_{n \mathop \to \infty} \int \size {f - f_n}^p \rd \mu\) |
Thus we have:
- $\ds 2^p \norm f_p ^p \le 2^p \norm f_p ^p - \limsup_{n \mathop \to \infty} \int \size {f - f_n}^p \rd \mu$
By Real Number Ordering is Compatible with Addition, adding $- 2^p \norm f_p ^p$ to the both sides:
- $\ds 0 \le - \limsup_{n \mathop \to \infty} \int \size {f - f_n}^p \rd \mu$
By Order of Real Numbers is Dual of Order of their Negatives:
- $\ds \limsup_{n \mathop \to \infty} \int \size {f - f_n}^p \rd \mu \le 0$
![]() | This needs considerable tedious hard slog to complete it. In particular: Details To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Frigyes Riesz.
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $12.10$