Spectrum of Element of Banach Algebra is Bounded
Theorem
Let $\struct {A, \norm {\, \cdot \,} }$ be a Banach algebra over $\C$.
Let $x \in A$.
Let $\map {\sigma_A} x$ be the spectrum of $x$ in $A$.
Then $\map {\sigma_A} x$ is bounded, and in particular:
- $\cmod \lambda \le \norm x$ for all $\lambda \in \map {\sigma_A} x$
Corollary
Let $\map {r_A} x$ be the spectral radius of $x$ in $A$.
Then:
- $\map {r_A} x \le \norm x$
Proof
Suppose first that $\struct {A, \norm {\, \cdot \,} }$ is unital.
Let $\map G A$ be the group of units.
Let $\lambda \in \C$ be such that $\cmod \lambda > \norm x$.
Then from Norm Axiom $\text N 2$: Positive Homogeneity, we have:
- $\ds \norm {\frac x \lambda} < 1$
From Element of Unital Banach Algebra Close to Identity is Invertible:
- $\ds {\mathbf 1}_A - \frac x \lambda \in \map G A$
Hence:
- $\lambda {\mathbf 1}_A - x \in \map G A$
So, we have:
- $\set {\lambda \in \C : \cmod \lambda > \norm x} \subseteq \set {\lambda \in \C : \lambda {\mathbf 1}_A - x \in \map G A}$
so that:
- $\set {\lambda \in \C : \lambda {\mathbf 1}_A - x \not \in \map G A} \subseteq \set {\lambda \in \C : \cmod \lambda \le \norm x}$
So we have:
- $\map {\sigma_A} x \subseteq \set {\lambda \in \C : \cmod \lambda \le \norm x}$
in the case that $\struct {A, \norm {\, \cdot \,} }$ is unital.
Now suppose that $\struct {A, \norm {\, \cdot \,} }$ is not unital.
Let $\struct {A_+, \norm {\, \cdot \,}_{A_+} }$ be the normed unitization of $\struct {A, \norm {\, \cdot \,} }$.
From the definition of the spectrum in a non-unital algebra, we have:
- $\map {\sigma_A} x = \map {\sigma_{A_+} } {\tuple {x, 0} }$
From the unital case, we have that $\map {\sigma_{A_+} } {\tuple {x, 0} }$ is bounded with:
- $\cmod \lambda \le \norm {\tuple {x, 0} }_{A_+}$ for all $\lambda \in \map {\sigma_A} x$.
We have:
- $\norm {\tuple {x, 0} }_{A_+} = \norm x$
and so:
- $\cmod \lambda \le \norm x$ for all $\lambda \in \map {\sigma_A} x$.
$\blacksquare$