Spectrum of Product of Elements of Banach Algebra
Theorem
Let $\struct {A, \norm {\, \cdot \,} }$ be a Banach algebra over $\C$.
Let $\sigma_A$ denote spectrum in $A$.
Let $x, y \in A$.
Then we have:
- $\map {\sigma_A} {x y} \setminus \set 0 = \map {\sigma_A} {y x} \setminus \set 0$
Proof
First take $A$ to be unital.
We show that ${\mathbf 1}_A - x y$ is invertible if and only if ${\mathbf 1}_A - y x$ is invertible.
Swapping $x$ and $y$ it suffices to show that if ${\mathbf 1}_A - x y$ is invertible then ${\mathbf 1}_A - y x$ is invertible.
Suppose that ${\mathbf 1}_A - x y$ is invertible.
We have:
\(\ds \paren { {\mathbf 1}_A - y x} \paren { {\mathbf 1}_A + y \paren { {\mathbf 1}_A - x y}^{-1} x}\) | \(=\) | \(\ds {\mathbf 1}_A - y x + y \paren { {\mathbf 1}_A - x y}^{-1} x - y x y \paren { {\mathbf 1}_A - x y}^{-1} x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren {-\mathbf 1_A + \paren { {\mathbf 1}_A - x y}^{-1} - x y \paren { {\mathbf 1}_A - x y}^{-1} } x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren {-\mathbf 1_A + \paren { {\mathbf 1}_A - x y}^{-1} \paren { {\mathbf 1}_A - x y} } x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren { -\mathbf 1_A {\mathbf 1}_A} x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y {\mathbf 0}_A x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A\) |
and:
\(\ds \paren { {\mathbf 1}_A + y \paren { {\mathbf 1}_A - x y}^{-1} x} \paren { {\mathbf 1}_A - y x}\) | \(=\) | \(\ds {\mathbf 1}_A + y \paren { {\mathbf 1}_A - x y}^{-1} x - y x - y \paren { {\mathbf 1}_A - x y}^{-1} x y x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren { \paren { {\mathbf 1}_A - x y}^{-1} - {\mathbf 1}_A - \paren { {\mathbf 1}_A - x y}^{-1} x y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren { \paren { {\mathbf 1}_A - x y}^{-1} \paren { {\mathbf 1}_A - x y} } x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y \paren { -\mathbf 1_A {\mathbf 1}_A} x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A + y {\mathbf 0}_A x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds {\mathbf 1}_A\) |
So ${\mathbf 1}_A - y x$ is invertible with inverse ${\mathbf 1}_A y \paren { {\mathbf 1}_A - x y}^{-1} x$.
Hence ${\mathbf 1}_A - x y$ is invertible if and only if ${\mathbf 1}_A - y x$ is invertible.
Now take $\lambda \in \C \setminus \set 0$.
Take $\mu \in \C \setminus \set 0$ such that $\lambda = \mu^2$.
Then applying the above, we have that ${\mathbf 1}_A - \paren {x/\mu} \paren {y/\mu}$ is invertible if and only if ${\mathbf 1}_A - \paren {y/\mu} \paren {x/\mu}$ is invertible.
Hence ${\mathbf 1}_A - \lambda^{-1} x y$ is invertible if and only if ${\mathbf 1}_A - \lambda^{-1} y x$ is invertible if $\lambda \ne 0$.
Hence $\lambda {\mathbf 1}_A - x y$ is invertible if and only if $\lambda {\mathbf 1}_A - y x$ invertible if $\lambda \ne 0$.
This is precisely the statement:
- $\map {\sigma_A} {x y} \setminus \set 0 = \map {\sigma_A} {y x}$
Now suppose that $A$ is not unital.
Let $\struct {A_+, \norm {\, \cdot \,}_{A_+} }$ be the unitization of $A$.
By the unital case we have:
- $\map {\sigma_{A_+} } {\tuple {x, 0} \tuple {y, 0} } \setminus \set 0 = \map {\sigma_{A_+} } {\tuple {y, 0} \tuple {x, 0} } \setminus \set 0$
That is:
- $\map {\sigma_{A_+} } {\tuple {x y, 0} } \setminus \set 0 = \map {\sigma_{A_+} } {\tuple {y x, 0} } \setminus \set 0$
Hence by the definition of the spectrum in a non-unital algebra:
- $\map {\sigma_A} {x y} \setminus \set 0 = \map {\sigma_A} {y x} \setminus \set 0$
$\blacksquare$