Spectrum of Projection in *-Algebra
Jump to navigation
Jump to search
Theorem
Let $\struct {A, \ast}$ be a $\ast$-algebra over $\C$.
Let $p$ be a projection on $A$.
Let $\map {\sigma_A} p$ be the spectrum of $p$ in $A$.
Then $\map {\sigma_A} p \subseteq \set {0, 1}$.
Corollary
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a unital $\text C^\ast$-algebra.
Let $p$ be a projection on $A$.
Let $\map {\sigma_A} p$ be the spectrum of $p$ in $A$.
Then:
- $p = {\mathbf 0}_A$ if and only if $\map {\sigma_A} p = \set 0$
- $p = {\mathbf 1}_A$ if and only if $\map {\sigma_A} p = \set 1$
- $p \not \in \set { {\mathbf 0}_A, {\mathbf 1}_A}$ if and only if $\map {\sigma_A} p = \set {0, 1}$.
Proof
From the definition of a projection, we have $p^2 = p$.
Hence $p^2 - p = {\mathbf 0}_A$.
Hence from Spectrum of Zero Vector in Algebra, we have $\map {\sigma_A} {p^2 - p} = \map {\sigma_A} { {\mathbf 0}_A} = \set 0$.
From the Spectral Mapping Theorem for Polynomials, we have:
- $\set 0 = \set {z^2 - z : z \in \map {\sigma_A} p}$
In other words:
- if $z \in \map {\sigma_A} p$, then $z^2 - z = 0$.
That is:
- $z = 0$ or $z = 1$.
So we obtain $\map {\sigma_A} p \subseteq \set {0, 1}$.
$\blacksquare$