# Squares whose Digits can be Separated into 2 other Squares

 $\displaystyle 7^2$ $=$ $\displaystyle 49$ $4 = 2^2$, $9 = 3^2$ $\displaystyle 13^2$ $=$ $\displaystyle 169$ $16 = 4^2$, $9 = 3^2$ $\displaystyle 19^2$ $=$ $\displaystyle 361$ $36 = 6^2$, $1 = 1^2$ $\displaystyle 35^2$ $=$ $\displaystyle 1225$ $1 = 1^2$, $225 = 15^2$ $\displaystyle 38^2$ $=$ $\displaystyle 1444$ $144 = 12^2$, $4 = 2^2$ $\displaystyle 41^2$ $=$ $\displaystyle 1681$ $16 = 4^2$, $81 = 9^2$ $\displaystyle 57^2$ $=$ $\displaystyle 3249$ $324 = 18^2$, $9 = 3^2$ $\displaystyle 65^2$ $=$ $\displaystyle 4225$ $4 = 2^2$, $225 = 15^2$ $\displaystyle 70^2$ $=$ $\displaystyle 4900$ $4 = 2^2$, $900 = 30^2$ $\displaystyle 125^2$ $=$ $\displaystyle 15 \, 625$ $1 = 1^2$, $5625 = 75^2$ $\displaystyle 130^2$ $=$ $\displaystyle 16 \, 900$ $16 = 4^2$, $900 = 30^2$ $\displaystyle 190^2$ $=$ $\displaystyle 36 \, 100$ $36 = 6^2$, $100 = 10^2$ $\displaystyle 205^2$ $=$ $\displaystyle 42 \, 025$ $4 = 2^2$, $2025 = 45^2$ $\displaystyle 223^2$ $=$ $\displaystyle 49 \, 729$ $49 = 7^2$, $729 = 27^2$