Stabilizer is Normal iff Stabilizer of Each Element of Orbit
Theorem
Let $\struct {G, \circ}$ be a group.
Let $S$ be a set.
Let $*: G \times S \to S$ be a group action.
Let $x \in S$.
Let $\Stab x$ denote the stabilizer of $x$ under $*$.
Let $\Orb x$ denote the orbit of $x$ under $*$.
Then $\Stab x$ is normal in $G$ if and only if $\Stab x$ is also the stabilizer of every element in $\Orb x$.
Proof
This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
Necessary Condition
Let $\Stab x$ be normal in $G$.
Let $t \in \Stab x$.
Let $y \in \Orb x$.
By Definition 1 of Orbit (Group Theory):
- $(1): \quad y = g * x$
for a $g \in G$.
By Definition 1 of Normal Subgroup:
- ${\Stab x} \circ g = g \circ \Stab x$
In particular:
- $(2): \quad t \circ g = g \circ t'$
for a $t' \in \Stab x$.
Therefore:
\(\ds t * y\) | \(=\) | \(\ds t * \paren {g * x}\) | $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {t \circ g} * x\) | Group Action Axiom $\text {GA} 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g \circ t'} * x\) | $(2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds g * \paren {t' * x}\) | Group Action Axiom $\text {GA} 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds g * x\) | as $t' \in \Stab x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds y\) | $(1)$ |
That is:
- $t \in \Stab y$
$\Box$
Sufficient Condition
Let $\Stab x$ be the stabilizer of every element in $\Orb x$.
We shall show Definition 3 of Normal Subgroup, i.e.
- $\forall g \in G : g^{-1} \circ \Stab x \circ g \subseteq \Stab x$
- $\forall g \in G : g \circ \Stab x \circ g^{-1} \subseteq \Stab x$
It suffices to verify the first inclusion, from which the second one follows by choosing $g^{-1}$ instead of $g$.
To this end, let $g \in G$.
Let $t \in \Stab x$.
By Definition 1 of Orbit (Group Theory):
- $g * x \in \Orb x$
Thus by hypothesis:
- $(3): \quad t \in \Stab {g * x}$
Therefore:
\(\ds \paren {g^{-1} \circ t \circ g} * x\) | \(=\) | \(\ds g^{-1} * \paren {t * \paren {g * x} }\) | Group Action Axiom $\text {GA} 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds g^{-1} * \paren {g * x}\) | by $(3)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g^{-1} \circ g} * x\) | Group Action Axiom $\text {GA} 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds e * x\) | Definition of Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds x\) | Group Action Axiom $\text {GA} 2$ |
That is:
- $g^{-1} \circ t \circ g \in \Stab x$
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $6$: Cosets: Exercise $12$