Stabilizer is Subgroup
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group which acts on a set $X$.
Let $\Stab x$ be the stabilizer of $x$ by $G$.
Then for each $x \in X$, $\Stab x$ is a subgroup of $G$.
Corollary
Let $G$ be a group whose identity is $e$.
Let $G$ act on a set $X$.
Let $x \in X$.
Then:
- $\forall g, h \in G: g * x = h * x \iff g^{-1} h \in \Stab x$
Proof
From the Group Action Axiom $\text {GA} 2$:
- $e * x = x \implies e \in \Stab x$
and so $\Stab x$ cannot be empty.
Let $g, h \in \Stab x$.
\(\ds g, h\) | \(\in\) | \(\ds \Stab x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds g * x\) | \(=\) | \(\ds x\) | Definition of Stabilizer of $x$ by $G$ | ||||||||||
\(\, \ds \land \, \) | \(\ds h * x\) | \(=\) | \(\ds x\) | Definition of Stabilizer of $x$ by $G$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds g * \paren {h * x}\) | \(=\) | \(\ds x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {g \circ h} * x\) | \(=\) | \(\ds x\) | Group Action Axiom $\text {GA} 1$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds g \circ h\) | \(\in\) | \(\ds \Stab x\) | Definition of Stabilizer of $x$ by $G$ |
Let $g \in \Stab x$.
Then:
- $x = \paren {g^{-1} \circ g} * x = g^{-1} * \paren {g * x} = g^{-1} * x$
Hence $g^{-1} \in \Stab x$.
Thus the conditions for the Two-Step Subgroup Test are fulfilled, and $\Stab x \le G$.
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 5.6$. Stabilizers
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Sylow Theorems: $\S 54$
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $6$: An Introduction to Groups: Exercise $5$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 3.3$: Group actions and coset decompositions
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $10$: The Orbit-Stabiliser Theorem: Proposition $10.9$