Standard Parity Check Matrix/Examples/(6, 3) code in Z2
Jump to navigation
Jump to search
Example of Standard Parity Check Matrix
Let $C$ be the linear $\tuple {6, 3}$-code in $\Z_2$ whose standard generator matrix $G$ is given by:
- $G := \begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$
Its standard parity check matrix $P$ is given by:
- $P := \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$
Proof
Expressing $G$ in the form:
- $G = \paren {\begin{array} {c|c} \mathbf I_k & \mathbf A \end{array} }$
it is seen that:
- $\mathbf A = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
It is noted that $\mathbf A^\intercal$ is:
- $\mathbf A^\intercal = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
as $\mathbf A$ is symmetrical about the main diagonal.
Then each of the elements of $\Z_2$ is self-inverse, so:
- $-\mathbf A^\intercal = \mathbf A^\intercal$
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $6$: Error-correcting codes: Example $6.18$