Subset Product with Normal Subgroup is Subgroup/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group whose identity is $e$.

Let:

$(1): \quad H$ be a subgroup of $G$
$(2): \quad N$ be a normal subgroup of $G$.

Let $H N$ denote subset product.


Then $H N$ and $N H$ are both subgroups of $G$.


Proof



Consider the subset product $N H$.

We have that:

\(\ds N H\) \(=\) \(\ds \set {n h : n \in N , h \in H}\) Definition of Subset Product
\(\ds \) \(=\) \(\ds \bigcup_{h \mathop \in H} \set {n h : n \in N}\)
\(\ds \) \(=\) \(\ds \bigcup_{h \mathop \in H} N h\) Definition of Left Coset
\(\ds \) \(=\) \(\ds \bigcup_{h \mathop \in H} h N\) $N$ is normal
\(\ds \) \(=\) \(\ds \bigcup_{h \mathop \in H} \set {h n : n \in N}\) Definition of Right Coset
\(\ds \) \(=\) \(\ds \set {h n : n \in N , h \in H}\)
\(\ds \) \(=\) \(\ds H N\) Definition of Subset Product

Therefore, $N$ and $H$ are permutable.

The result follows from Subset Product of Subgroups.

$\blacksquare$