Sum of Arithmetic Sequence
Theorem
Let $\sequence {a_k}$ be an arithmetic sequence defined as:
- $a_k = a + k d$ for $k = 0, 1, 2, \ldots, n - 1$
Then its closed-form expression is:
\(\ds \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds n \paren {a + \frac {n - 1} 2 d}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {a + l} } 2\) | where $l$ is the last term of $\sequence {a_k}$ |
Proof
We have that:
- $\ds \sum_{k \mathop = 0}^{n - 1} \paren {a + k d} = a + \paren {a + d} + \paren {a + 2 d} + \dotsb + \paren {a + \paren {n - 1} d}$
Then:
\(\ds 2 \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds 2 \paren {a + \paren {a + d} + \paren {a + 2 d} + \dotsb + \paren {a + \paren {n - 1} d} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a + \paren {a + d} + \dotsb + \paren {a + \paren {n - 1} d} }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\paren {a + \paren {n - 1} d} + \paren {a + \paren {n - 2} d} + \dotsb + \paren {a + d} + a}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 a + \paren {n - 1} d}_1 + \paren {2 a + \paren {n - 1} d}_2 + \dotsb + \paren {2 a + \paren {n - 1} d}_n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n \paren {2 a + \paren {n - 1} d}\) |
So:
\(\ds 2 \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds n \paren {2 a + \paren {n - 1} d}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds \frac {n \paren {2 a + \paren {n - 1} d} } 2\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {a + l} } 2\) | Definition of Last Term $l$ |
Hence the result.
$\blacksquare$
Also presented as
The Sum of Arithmetic Sequence can also be seen presented in the forms:
\(\ds \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds n a + n \dfrac 1 2 \paren {n - 1} d\) | ||||||||||||
\(\ds \sum_{k \mathop = 0}^{n - 1} \paren {a + k d}\) | \(=\) | \(\ds \dfrac 1 2 n \paren {2 a + \paren {n - 1} d}\) |
Some present it as:
- $\ds \sum_{k \mathop = 0}^n \paren {a + k d} = a \paren {n + 1} + \dfrac 1 2 d n \paren {n + 1}$
The reality is that this is a messy result that cannot be presented elegantly.
Examples
Sum of $j$ from $m$ to $n$
\(\ds \sum_{j \mathop = m}^n j\) | \(=\) | \(\ds m \paren {n - m + 1} + \frac 1 2 \paren {n - m} \paren {n - m + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {n + 1} } 2 - \frac {\paren {m - 1} m} 2\) |
Sum of $i + k \paren {2 + 2 i}$
Let $A_n$ be the arithmetic sequence of $n$ terms defined as:
\(\ds A_n\) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} \paren {a_0 + \paren {2 + 2 i} k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds i + \paren {2 + 3 i} + \paren {4 + 5 i} + \paren {6 + 7 i} + \dotsb + \paren {2 n - 2 + \paren {2 n - 1} i}\) |
Then:
- $A_n = n \paren {n - 1} + n^2 i$
Historical Note
Doubt has recently been cast on the accuracy of the tale about how Carl Friedrich Gauss supposedly discovered this technique at the age of $8$.
Linguistic Note
In the context of an arithmetic sequence or arithmetic-geometric sequence, the word arithmetic is pronounced with the stress on the first and third syllables: a-rith-me-tic, rather than on the second syllable: a-rith-me-tic.
This is because the word is being used in its adjectival form.
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.1$ Binomial Theorem etc.: Sum of Arithmetic Progression to $n$ Terms: $3.1.9$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Arithmetic Series: $19.1$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): arithmetic series
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: Example $4$. $(15)$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): arithmetic progression (arithmetic sequence)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): arithmetic progression (arithmetic sequence)
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 21$: Series of Constants: Arithmetic Series: $21.1.$