Sum of Cosines of Arithmetic Sequence of Angles/Formulation 1
Jump to navigation
Jump to search
Theorem
Let $\alpha \in \R$ be a real number such that $\alpha \ne 2 \pi k$ for $k \in \Z$.
Then:
\(\ds \sum_{k \mathop = 0}^n \map \cos {\theta + k \alpha}\) | \(=\) | \(\ds \cos \theta + \map \cos {\theta + \alpha} + \map \cos {\theta + 2 \alpha} + \map \cos {\theta + 3 \alpha} + \dotsb\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \map \cos {\theta + \frac {n \alpha} 2}\) |
Proof
From Sum of Complex Exponentials of i times Arithmetic Sequence of Angles: Formulation 1:
- $\ds \sum_{k \mathop = 0}^n e^{i \paren {\theta + k \alpha} } = \paren {\map \cos {\theta + \frac {n \alpha} 2} + i \map \sin {\theta + \frac {n \alpha} 2} } \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} }$
It is noted that, from Sine of Multiple of Pi, when $\alpha = 2 \pi k$ for $k \in \Z$, $\map \sin {\alpha / 2} = 0$ and the right hand side is not defined.
From Euler's Formula, this can be expressed as:
- $\ds \sum_{k \mathop = 0}^n \paren {\map \cos {\theta + k \alpha} + i \map \sin {\theta + k \alpha} } = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \paren {\map \cos {\theta + \frac {n \alpha} 2} + i \map \sin {\theta + \frac {n \alpha} 2} }$
Equating real parts:
- $\ds \sum_{k \mathop = 0}^n \map \cos {\theta + k \alpha} = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \map \cos {\theta + \frac {n \alpha} 2}$
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Miscellaneous Problems: $143 \ \text{(a)}$